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Changelog

Version 2.1 (23/09/2025)

• The design of PERK has been improved and now relies on the modeling
from [BBGK24] along with the VOLEitH framework [BBD+23c]. As a result,
PERK signature sizes have been significantly reduced.

Version 2.0 (05/02/2025)

• Thibauld Feneuil, Matthieu Rivain and Keita Xagawa have joined the PERK
team.

Version 1.1 (16/10/2023)

• Reduce signature sizes for short parameters set by approximately 5% using
a ranking algorithm for permutation encoding ;

• Improve the implementation (reduced stack-memory usage and bug fixing).
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1 Introduction

PERK is a post-quantum digital signature scheme based on the hardness of
the PERmuted Kernel Problem (PKP) [Sha90]. The scheme builds on a Zero-
Knowledge Proof of Knowledge (ZK PoK) of a PKP solution computed using
the modeling from [BBGK24] along with the Multi-Party Computation in the
Head (MPCitH) paradigm [IKOS07]. More precisely, PERK relies on the VOLE
in the Head (VOLEitH) framework [BBD+23c]. The ZK PoK is then converted
into a signature scheme using the Fiat-Shamir transform [FS87].

Organization. We present in Section 2 some background and the notations we
will use. Then, Section 3 and Section 4 respectively provide an overview and a
detailed algorithmic description of PERK. Section 5 and Section 6 are dedicated
to the parameters and the performances of PERK. A security analysis of the
scheme is provided in Section 7. Finally, in Section 8, we summarize the main
advantages and limitations of the scheme.
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2 Preliminaries

2.1 Notations

Let λ denote the security parameter. For integers a, b we denote [a, b] the set of
integers i such that a ≤ i ≤ b. We write [n] as a shorthand for [0, n − 1]. We
denote Sn the group of permutations of the set [n]. Let Fq denote the finite field
of q elements where q is the power of a prime. If S is a finite set, we denote
by x

$←− S that x is chosen uniformly at random from S. Similarly, we write
x

$,θ←− S, if x is sampled pseudo-randomly from the set S, based on the seed θ. We
use x to denote input and denote its length by |x|. Vectors are denoted by bold
lower-case letters and matrices by bold capital letters (e.g., v = (v1, . . . , vn) ∈ Fnq
and M = (mij)1⩽i⩽k,1⩽j⩽n ∈ Fk×nq ). We denote by ker(M) the right kernel of
the matrix M .

We call a function f : N → R+ negligible, if for all c ∈ N there exists a
N0 ∈ N such that f(n) < 1/nc for all n > N0. We write negl(λ) to denote an
arbitrary negligible function. We use poly(λ) for function which is polynomially
bounded in λ, that is there exists c, λ0 ∈ N such that poly(λ) ≤ λc for all λ ≥ λ0.
We also abbreviate probabilistic polynomial-time as PPT. Let X and Y be two
discrete random variables defined over a finite support D. The statistical distance
between the two distributions is defined as

∆(X,Y ) :=
1

2

∑
d∈D

|Pr[X = d]− Pr[Y = d]|.

We say two ensembles of random variables {Xλ}λ∈N, {Yλ}λ∈N are statistically
close if there exists a negligible function negl : N → R+ such that ∆(Xλ, Yλ) ≤
negl(λ) for all λ ∈ N. We say two ensembles of random variables {Xx}x∈{0,1}∗ ,
{Yx}x∈{0,1}∗ are statistically close if there exists a negligible function negl : N→
R+ such that ∆(Xx, Yx) ≤ negl(|x|) for all x ∈ {0, 1}∗.

2.2 Standard cryptographic primitives

Definition 2.1 (Salt based PRG (adapted from [BBD+23b])). Let PRG :

{0, 1}2λ×{0, 1}λ → {0, 1}ℓ̂ be a deterministic polynomial-time algorithm. Let A
be a q-query, N -batch adversary. We define an experiment Exptmt-prg

PRG,A(q,N, λ) as
in Figure 1. Let

AdvPRGPRG[q,N, λ] :=

∣∣∣∣Pr[outA = 1 : outA ← Exptmt-prg
PRG,A(q,N, λ)

]
− 1

2

∣∣∣∣.
Then we call PRG as ((q,N, λ), (t, ε))-secure if for every adversary A running
in time t, its advantage AdvPRGPRG[q,N, λ] is at most ε. If λ is obvious in the
context, we will drop λ.
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Exptmt-prg
PRG,A (q,N, λ)

1 : b
$←− {0, 1}

2 : for i ∈ [q] : salti
$←− {0, 1}2λ

3 : for j ∈ [N ] :

4 : if b = 0 :

5 : seedj
$←− {0, 1}λ

6 : ri,j := PRG(salti, seedj)

7 : else : ri,j
$←− {0, 1}ℓ̂

8 : b′ ← A
(
{salti}i∈[q], {ri,j}(i,j)∈[q]×[N ]

)
9 : if b = b′ : return 1

10 : else : return 0

Fig. 1: Multi-challenge security of salt-based PRG

Note that, any ((1, 1, λ), (t, εPRG))-secure salt based PRG is also ((q,N, λ), (t, ε′PRG))-
secure with ε′PRG ≤ q ·N · εPRG.

Definition 2.2 (Collision Resistance). Let H : {0, 1}ℓin → {0, 1}ℓout be a
deterministic function. For any adversary making at most q queries to H, we
denote its advantage in finding a collision for H by AdvCollH [q]. We say that
H is (q, (t, ε))-secure if for every adversary A running in time t, its advantage
AdvCollH [q] is at most ε.

Definition 2.3 (Multi-Target Non-Invertibility). Let Com : {0, 1}ℓin →
{0, 1}ℓout be a deterministic function. For a q-query adversary, we define its ad-
vantage as

AdvNICom[q] := Pr

[
Com(inp) = comi :

com0, . . . , comq−1
$←− {0, 1}ℓout

(i, inp)← A(com0, . . . , comq−1)

]
.

We say that Com is (q, (t, ε))-secure if for every adversary A running in time t,
its advantage AdvNICom[q] is at most ε.

Definition 2.4 (One-time PRF). Let F : {0, 1}2λ × {0, 1}∗ → {0, 1}3λ be
a deterministic polynomial-time algorithm. Let an adversary A, we define its
advantage as

AdvPRFF :=

∣∣∣∣∣Pr
[
b = b′ :

b
$←− {0, 1}; rand $←− {0, 1}2λ; (state, inp)← A()

r0 := F (rand, inp); r1
$←− {0, 1}3λ; b′ ← A(rb, state)

]
− 1

2

∣∣∣∣∣.
We say that F is (t, ε)-secure if for every adversary A running in time t, its
advantage AdvPRFF is at most ε.
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Definition 2.5 (Joint PRF Security). Let PRG : {0, 1}2λ×{0, 1}λ → {0, 1}ℓ̂
and Com : {0, 1}∗ × {0, 1}λ → {0, 1}2λ be deterministic polynomial-time algo-
rithms. Let A be a q-query, N -batch adversary in the experiment from Figure 2.
Let

AdvJPRFPRG,Com[q,N, λ] :=

∣∣∣∣Pr[outA = 1 : outA ← Exptmt-jprf
PRG,Com,A(q,N, λ)

]
− 1

2

∣∣∣∣.
Then we call a pair of PRG and Com as ((q,N, λ), (t, ε))-secure if for every
adversary A running in time t, its advantage AdvJPRFPRG,Com[q,N, λ] is at most
ε. If λ is obvious in the context, we will drop λ.

Exptmt-jprf
PRG,Com,A(q,N, λ)

1 : b
$←− {0, 1}

2 : for i ∈ [q] : salti
$←− {0, 1}2λ

3 :
({

inpi,j
}
(i,j)∈[q]×[N ]

, state
)
← A

(
{salti}i∈[q]

)
4 : for i ∈ [q] :

5 : for j ∈ [N ] :

6 : if b = 0 :

7 : seedj
$←− {0, 1}λ

8 : ri,j := PRG(salti, seedj)

9 : comi,j := Com(inpi,j , seedj)

10 : else :

11 : ri,j
$←− {0, 1}ℓ̂

12 : comi,j
$←− {0, 1}2λ

13 : b′ ← A
(
state, {(ri,j , comi,j}(i,j)∈[q]×[N ]

)
14 : if b = b′ : return 1

15 : else : return 0

Fig. 2: Multi-challenge joint PRF security of commitment and PRG

2.3 Digital signature schemes

Definition 2.6 (Signature Scheme). A signature scheme consists of three
PPT algorithms SIG = (KeyGen,Sign,Verify) which work as follows:
• KeyGen

(
1λ

)
: The key generation algorithm takes a security parameter as

input and outputs a pair of keys (pk, sk). The key sk is the private (secret)
signing key and pk is the public key used for verification.

7



Expteuf-cma
SIG,A (λ)

1 : (pk, sk)← KeyGen(1λ)

2 : Q := ∅

3 : (msg∗, σ∗
)← AOSign(·)

(vk)

4 : d1 = Verify(pk,msg∗, σ∗
)

5 : d2 =
(
(msg∗, ·) ̸∈ Q

)
6 : return d1 ∧ d2

Exptsuf-cma
SIG,A (λ)

1 : (pk, sk)← KeyGen(1λ)

2 : Q := ∅

3 : (msg∗, σ∗
)← AOSign(·)

(vk)

4 : d1 = Verify(pk,msg∗, σ∗
)

5 : d2 =
(
(msg∗, σ∗

) ̸∈ Q
)

6 : return d1 ∧ d2

OSign(msg)

1 : σ ← Sign(sk,msg)

2 : Q := Q ∪ {(msg, σ)}
3 : return σ

Fig. 3: EUF-CMA and SUF-CMA games.

• Sign(sk,msg): The signing algorithm takes as input a secret signing key sk
and a message msg from some message space (that may depend on pk). It
outputs a signature σ ← Sign(sk,msg).

• Verify(pk,msg, σ): The deterministic verification algorithm takes as input
a public key pk, a message msg, and a signature σ. It outputs a bit b :=
Verify(pk,msg, σ), with b = 1 meaning the signature-message pair is valid
and b = 0 meaning it is invalid.

Definition 2.7 (EUF-CMA Security and EUF-NMA Security). A sig-
nature scheme SIG = (KeyGen,Sign,Verify) is existentially unforgeable under
chosen-message attacks (EUF-CMA secure) if, for all PPT adversaries A there
is a negligible function negl(·) such that,

Pr[Expteuf-cma
SIG,A (λ) = 1] ≤ negl(λ),

where Expteuf-cma
SIG,A (λ) is the security game defined in Figure 3. In addition, if we

consider the game where the signing oracle OSign is removed, then the signature
scheme is said to be existentially unforgeable under no-message attacks (EUF-
NMA secure).

Definition 2.8 (SUF-CMA Security). A signature scheme SIG = (KeyGen,
Sign,Verify) is strongly existentially unforgeable under chosen-message attacks
(SUF-CMA secure) if, for all PPT adversaries A there is a negligible function
negl(·) such that,

Pr[Exptsuf-cma
SIG,A (λ) = 1] ≤ negl(λ),

where Exptsuf-cma
SIG,A (λ) is the security game defined in Figure 3

2.4 Permuted Kernel Problem

PERK’s security relies on the permuted kernel problem (PKP) introduced by
Shamir in [Sha90].
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Definition 2.9 (Permuted Kernel Problem (PKP)). Let (q,m, n) be pos-
itive integers such that m < n, H ∈ Fm×nq , x ∈ Fnq and π ∈ Sn be a per-
mutation such that H

(
π[x]

)
= 0. Given (H,x), the Permuted Kernel Problem

PKP(q,m, n) asks to find π̃ ∈ Sn such that H
(
π̃[x]

)
= 0.

By convention, we call this problem the PKP problem. Hereafter, we interpret
the PKP problem in matrix form namely the secret permutation π is seen as a
permutation matrix P ∈ Fn×nq such that HPx = 0. In addition, our working
field Fq is an extension field of F2.

The formal definition of the PKP assumption requires an instance distribu-
tion. To shorten the instance, we will employ ExpandMatrixM, a deterministic
function {0, 1}λ → Fm×(n−m)

q .

Definition 2.10 (Advantage against PKP). Let (q,m, n) be positive inte-
gers such that m < n and q is a power of a prime. For an adversary A, we define
its advantage AdvOWA against the PKP problem as follows:

AdvOWA := Pr

H(
π̃[x]

)
= 0 :

Hseed
$←− {0, 1}λ;M := ExpandMatrixM(Hseed);

H := [Im M ];x′
$←− ker(H);π

$←− Sn;
x := π−1[x′]; π̃ ← A(Hseed,x)

 .
We say that the PKP assumption holds if for any polynomial-time adversary A,
its advantage AdvOWA is negligible in λ.
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3 Overview of PERK

3.1 VOLE-in-the-Head framework

VOLE correlations. A VOLE (Vector Oblivious Linear Evaluation) correla-
tion of length ℓ̂ over F2ρ is defined by random values (u,v) ∈ Fℓ̂2 × Fℓ̂2ρ , and
(q, ∆) ∈ Fℓ̂2ρ × F2ρ , such that

qi = ui∆+ vi i ∈ [0, 1, . . . , ℓ̂− 1].

The VOLE correlation serves as an information theoretically secure commitment
to prover’s random value u. The mask v is unknown to the verifier, this provide
the hiding property, while the prover needs to guess ∆ in order to open the
commitment to some u′ ̸= u, which provides the binding property. Moreover,
owing to the linearity of VOLE correlations, these commitments are linearly
homomorphic. Therefore, such VOLE correlations can be used to build efficient
zero-knowledge proofs of knowledge, where the prover can commit to its secret
witness with help of VOLE correlations and convince the verifier by computing
some public function on the witness (and other public values) which can be
verified using only the verifier’s VOLE correlation inputs (q, ∆).

VOLE-in-the-Head. Following the approach of [BBD+23b,BBD+23c], in or-
der to achieve the public verifiability for our zero-knowledge proofs (and sig-
natures) we use the VOLE-in-the-Head (VOLEitH) technique. In this approach
the prover generates the values u,v and commits to these values. The prover
then computes the desired public relation with the help of committed VOLE
correlation inputs (u,v). At this point the verifier can send ∆ to the prover, and
prover can send opening to the commitments to (u,v), from which the verifier
can compute q without learning any extra information. Note that it is impor-
tant that the prover learns the value of ∆ (required to provide openings) only
after it has committed to the VOLE correlation inputs, and to the computations
of the zero-knowledge protocol (so it cannot change these after learning ∆),
since after the prover knows ∆, the binding property of the linear homomorphic
commitments does not hold.

In practice the VOLE correlation values are computed from uniform random
strings of length ℓ̂. In order to create a single instance of VOLE correlation
inputs (u,v) ∈ Fℓ̂2 × Fℓ̂2ρ the prover (signer) essentially needs to perform O(2ρ)
additions and multiplications. Similarly, after receiving the opening the verifier
also needs perform similar computation to acquire q. The soundness error of the
zero-knowledge proof of knowledge (relying on the binding property of linear
homomorphic commitment based on VOLE correlations) is 2−ρ. Therefore, to
achieve the desired security level we need to set ρ ≥ λ, however this means that
the prover and verifier will need to perform infeasible computations in order to
even get started by creating the VOLE correlation inputs. This is mitigated by
creating several parallel instances of VOLE correlations in a smaller field F2µ and
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concatenating them together to produce a single VOLE correlation instance in
exponentially large field F2ρ . This allows us to compute the VOLE correlations
required to achieve desired security level efficiently. For each parameter set, we
choose a repetition parameter, τ ∈ N along with a VOLE field parameter, µ ∈ N
such that ρ = τµ.

Committing to VOLE correlations. An important step in our signature
scheme is to commit a vector of pseudo-random seeds, and be able to later open
all-but-one of those seeds. Looking ahead these seeds will be used to generate
the aforementionned VOLE correlations. The standard approach to build such
an efficeint commitment scheme is to derive the seeds from a tree of length-
doubling PRGs. Such a construction is called an all-but-one vector commitment
scheme, relying on a GGM tree [GGM84], as suggested in [KKW18]. Suppose a
party needs to generate N seeds and then to reveal only N − 1 of those seeds
(without knowing in advance which seed should not be revealed). The principle
is to build a binary tree of depth ⌈log2(N)⌉. The root of the tree is labeled with
a master seed θ. The rest of the tree is labeled inductively by using a PRG of
double extension on each parent node and splitting the output on the left and
right children. To reveal all seeds except seed number i for 0 ≤ i ≤ N − 1, the
principle is to reveal the labels on the siblings of the paths from the root of the
tree to leave i. It allows to reconstruct all seeds but seed number i at the cost
of communicating ⌊log2(N)⌋ labels, which is more effective than communicating
N − 1 seeds. Instead of building one GGM-tree for each of the τ repetitions
of the proof of knowledge, we adopted the approach of using a unified tree, as
explained in [BBM+25], to save communication costs.

Computing VOLE correlations from seeds. The seeds obtained from the
GGM tree can be used to generate VOLE correlations as follows: Let ri =
PRG(seedi) be ℓ̂-bit pseudorandom strings for an integer i ∈ [0, N − 1] with
N := 2κ as the number of leaves in the GGM tree. The prover computes u,v as

u =

N−1∑
i=0

ri, v =

N−1∑
i=0

i · ri.

with i (and thus v) as an element in F2µ . The verifier chooses∆ ∈ [0, N−1] ⊆ F2µ

uniformly at random and receives all the seeds seedi for i ∈ [0, N − 1] \∆ from
the prover. The verifier can then compute

q =

N−1∑
i=0

(∆− i) · ri ∈ F2µ

We use the same approach as [BBD+23b] to compute the vole correlations
from seeds which is detailed in Section 4.4 and algorithm 4.4. In order to achieve
the desired security level, we need to repeat the above procedure τ times. How-
ever, this results in τ independent instances of VOLE correlations

qe = ue∆e + ve e ∈ [0, 1, . . . τ − 1]

11



with (ue,ve) ∈ Fℓ̂2×Fℓ̂2µ and (qe, ∆e) ∈ Fℓ̂2µ ×F2µ . Let ue ∈ Fℓ̂2 be represented as
a vector of length ℓ̂ over F2. Similarly elements in F2µ such∆e can be represented
by a vectors of length µ over F2. Also, ve and qe are vectors with elements in
F2µ and therefore can be represented by matrices of dimensions ℓ̂ × µ over F2.
We can then write the VOLE correlation equation as

Qe =
[
δe,0ue δe,1ue · · · δe,µ−1ue

]
+ ve

where (δe,0, δe,1, . . . , δe,µ−1) is the bit decomposition of ∆e ∈ F2µ . If the prover
can somehow modify these correlations such that all τ instances use the same
u value (say u0), then the prover combine (concatenate) ve and Qe matrices
to build VOLE correlation values v and q in Fℓ̂2ρ . Similarly, prover computes
∆ ∈ F2ρ by concatenating all bits {δe,i}(e,i)∈[0,...,τ−1]×[0,...,µ−1] from individual
∆e values. This gives us a desired VOLE correlation

Q = u0∆+ v

with (u0,v) ∈ Fℓ̂2 × Fℓ̂2ρ and (Q, ∆) ∈ Fℓ̂2ρ × F2ρ . The prover achieves this by
sending the correction values ce := u0−ue for e ∈ [1, . . . , τ −1]. These ce values
can be used by the verifier to adjust its correlation inputs such that all τ VOLE
correlations in F2µ hold with respect to u0.

Ensuring consistency of VOLE correlations. Note that if any of the correc-
tion values ce is inconsistent (i.e. ce ̸= u0 − ue) then the correctness of VOLE
correlations does not hold and therefore the zero-knowledge proof built using
such VOLE correlations cannot guarantee its correctness either. Therefore, the
verifier must check that ce values are consistent. The verifier can ensure this by
asking the prover compute a random linear universal hash function of u0 and
v, and send the hash values (say ũ, ṽ). The verifier can then compute the same
function on Q and then check if the VOLE correlation Q̃ = ũ∆+ ṽ holds true.
This consistency check was used earlier in [Roy22,BBD+23b]. For more details
kindly refer Section 4.4 and algorithm 4.8.

3.2 Proof of Knowledge for PKP

The zero-knowledge proof of knowledge underlying PERK is based on [BBGK24].
Recall that, the prover (signer) wants to prove the knowledge of a secret per-
mutation matrix P ∈ Fn×nq such that for some given public matrix H ∈ Fm×nq

(for m < n) and a public vector x ∈ Fnq , the equation HPx = 0 holds true. In
PERK, we achieve this goal in two steps, first the prover aims to convince the
verifier that it knows a permutation matrix. Then it shows that the equation
HPx = 0 holds true for this permutation matrix. We will therefore first focus
on proving that the prover knows some permutation matrix.
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Elementary vectors as building blocks. An elementary row vector ei of
length n for 0 ≤ i ≤ (n − 1) is the (n− 1− i)th row of an n × n identity ma-
trix. 1 Note that, for any n×n permutation matrix its rows are also elementary
vectors ei (but in an arbitrary order). Therefore, as a first step towards proving
knowledge of a specific secret permutation matrix, we can begin by trying to
prove that we know a certain elementary vector. The key observation is that an
elementary vector of length n, can be constructed by taking tensor product of
elementary vectors of smaller size. In particular, PERK uses elementary vectors
of lengths 4 and 2 to prove the knowledge of rows of secret permutation matri-
ces of sizes 64, 92, and 118. The prover proves the elementary structure of vector
e := [e0, e1, e2, e3] ∈ F4

2 by showing that the product e0 · e1 = 0 and e2 · e3 = 0
simultaneously. In case of elementary vector e := [e0, e1] ∈ F2

2 this is achieved
simply by showing e0 · e1 = 0. Additionally, the prover should also prove that
e0 ⊕ e1 ⊕ e2 ⊕ e3 = 1 (resp. e0 ⊕ e1 = 1). Proving these constraints simulta-
neously, allows the prover to demonstrate knowledge of elementary vectors, the
prover achieves this by constructing equivalent low degree polynomials which
have leading coefficient equal to 0 when the constraint is satisfied.

Knowledge of permutation and PKP solution. The prover computes the
proof for each row of the secret permutation vector as a tensor product of d
elementary vectors (for d ∈ {3, 4}) by constructing equivalent degree-d polyno-
mials with leading coefficient equal to 0 if and only if the corresponding row is
an elementary vector. At this stage, the prover is able to prove to the verifier the
permutation structure of the matrix. The prover then shows that these degree-d
polynomials when seen as entries of n × n matrix P satisfy the PKP equation
HPx = 0, where (H,x) corresponds to the public key of PKP. In order to
prove that all these polynomials have leading coefficients equal to 0, the prover
combines them all by taking a random linear combination of all the polynomials
(where the coefficients of the random linear combination are provided by the
verifier), adds secret masking polynomial of degree d− 1 to the linear combina-
tion and sends it to the verifier. The verifier checks if the received polynomial
has leading coefficient equal to 0 by evaluating it at a random point.

1 We assume the indexes start from 0, that is the elementary vector e0 denotes the
last that is (n− 1)th row of the identity matrix.
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4 Algorithmic Description

4.1 Object representation

Finite fields. Elements of Fq are stored in 16 bit unsigned integers. We also
use finite field arithmetic over F211 , F264 , F2128 , F2132 , F2198 , F2264 . These fields
are defined as polynomials over F2 modulo an irreducible polynomial F .

F11(γ) = 1 + γ2 + γ11

F64(γ) = 1 + γ1 + γ3 + γ4 + γ64

F128(γ) = 1 + γ1 + γ2 + γ7 + γ128

F132(γ) = 1 + γ3 + γ12

F198(γ) = 1 + γ7 + γ18

F264(γ) = 1 + γ1 + γ11 + γ17 + γ24

We use following functions to convert bit-strings into field elements (or positive
numbers) and vice versa:

• ToField converts a bit-string into a corresponding field element ;
• ToBits converts a field element into a corresponding bit-string ;
• BitDec converts a positive number into its binary decomposition ;
• NumRec takes a bit-string as the binary decomposition of a positive number

and reconstructs the number.

Algorithm 4.1: ToField(bits, k)

Public information and inputs

Public information: Maps an input bitstring bits ∈ {0, 1}nk, for a positive integer n ≥ 1 into

a field element (or vector of n fields elements) x ∈ Fn

2k
.

1 : let γk ∈ F
2k

// The γ element of F
2k

.

2 : if bits ∈ {0, 1}k:

3 : return x :=
∑k−1

i=0 bits[i] · γi
k

4 : elseif bits ∈ {0, 1}nk:

5 : for i ∈ [n]

6 : x[i] :=
∑k−1

j=0 bits[ni+ j] · γj
k

7 : endfor

8 : return x

9 : else :

10 : return ⊥

11 : endif
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Algorithm 4.2: ToBits(x, k, n)

Public information and inputs

Public information: Maps an input field element (or vector of n fields elements) x ∈ Fn

2k
, for

a positive integer n ≥ 1 into a bitstring bits ∈ {0, 1}nk.

1 : Initialize bits← ε // Empty string.

2 : Initialize bitslice← ε // Empty string.

3 : for i ∈ [n]

4 : Parse x[i] as x[i] = x0 + x1γk + · · ·+ xk−1γ
k−1
k with x0, x1, . . . , xk−1 ∈ {0, 1}

5 : bitslice := x0||x1|| · · · ||xk−1 // bitslice ∈ {0, 1}k

6 : bits := bits||bitslice

7 : endfor

8 : return bits // bits ∈ {0, 1}nk.

Integer and bits conversions

Algorithm 4.3: BitDec(i, d)

Public information and inputs

Public information: Decomposes an integer

i into bits.

1 : for j ∈ [d]:

2 : bj := i mod 2

3 : i := (i− bj)/2

4 : endfor

5 : return (b0, b1, . . . , bd−1).

Algorithm 4.4: NumRec(d, bits)

Public information and inputs

Public information: Reconstructs an inte-

ger i from a bitstring.

1 : Parse bits as bits := b0|| · · · ||bd−1

2 : return
∑d−1

j=0 bj · 2
j

Vectors and Matrices. Vectors of Fnq (respectively Fmq ) are represented as
arrays of length n (respectively of length m) of Fq elements. Matrices H ∈ Fm×nq

are represented as two dimensional arrays of Fq elements i.e. arrays of length m
of arrays of length n.

Permutations and Witness. We use following auxiliary functions during sign-
ing process to encode positive numbers corresponding to the index of non-zero
entries of the secret permutation matrix, and represent these secret indices as
witness for the proof system.

• EncodeNum-64 encodes a number between 0 to 63 in base-4 notation. This
function is used for NIST Level-I parameter set. Given an input pos ∈ [64],
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it outputs a unique tuple of three numbers (i, j, k) ∈ [4]
3 such that pos =

16k + 4j + i ;
• EncodeNum-128 encodes a number between 0 to 127 using hybrid base-4 and

base-2 notation. This function is used for NIST Level-III and NIST Level-
V parameter sets. On input pos ∈ [127], it outputs a unique tuple of four
numbers (i, j, k, b) ∈ [4]

3 × {0, 1} such that pos = 64b+ 16k + 4j + i ;
• EncodeNum is a wrapper function that internally calls either EncodeNum-64

or EncodeNum-128 depending on the security level ;
• LeftShift shifts the bits of an input bit-string to left by a specified amount

given as input.

Algorithm 4.5: EncodeNum-64(pos)

Public information and inputs

Public information: Encodes input number pos ∈ [64] in base-4. order.

Output

Array encPosArray of length 3, encoding the input position pos.

1 : Initialize encPosArray← [null,null,null]

2 : k ←
⌊ pos

16

⌋
3 : j ←

⌊
pos−(k∗16)

4

⌋
4 : i← pos− (k ∗ 16)− (j ∗ 4)

5 : encPosArray← [i, j, k]

6 : return encPosArray

Algorithm 4.6: EncodeNum-128(pos)

Public information and inputs

Public information: Encodes input number pos ∈ [128] in hybrid base-4/base-2.

Output

Array encPosArray of length 4, encoding the input position pos.

1 : Initialize encPosArray← [null,null,null,null]

2 : b←
⌊ pos

64

⌋
// b ∈ {0, 1}

3 : temp← EncodeNum-64 (pos− (b ∗ 64))

// Parse temp as temp := [i, j, k] where i, j, k ∈ [0, 3]

4 : encPosArray← [i, j, k, b]

5 : return encPosArray
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Algorithm 4.7: EncodeNum(pos)

Public information and inputs

Public information: Wrapper function for selecting encoding function for input number pos

based on desired security level.

Output

Array encPosArray encoding the input position pos.

Security Level 1

1 : if λ = 128:

2 : return EncodeNum-64 (pos)

Security Levels 3 and 5

3 : elseif λ ∈ {192, 256}:

4 : return EncodeNum-128 (pos)

5 : else :

6 : return ⊥

7 : endif

Algorithm 4.8: LeftShift(bits, shift)

Public information and inputs

Public information: Shifts input bitstring bits ∈ {0, 1}∗ to left by shift positions if shift is

smaller than length of bits.

1 : if shift ∈ [len(bits)]:

2 : return bits << shift

3 : else :

4 : return ⊥

5 : endif

4.2 Sampling functions

The randombytes function provided by the NIST is used to sample uniformly
at random the salt and various seeds (e.g., Hseed, kerseed, permseed). The PRG
function is instantiated using SHAKE-128 for λ = 128 and SHAKE-256 otherwise,
along with domain separators.

Random elements of Fq are obtained by sampling log2(q) = 11 random bits from
the PRG. Random vectors in Fnq (respectively matrices in Fm×nq ) are sampled
uniformly by sampling in order n (respectively m× n) elements in Fq.
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ExpandMatrixM(Hseed) → Fm×(n−m)
q : Samples a matrix M ∈ Fm×(n−m)

q uni-
formly at random using the PRG with seed Hseed and domain separator dom =
0x00.

ExpandKernelVector(kerseed,H) → ker(H) : Samples a vector x′ ∈ Fnq in ker(H)
uniformly at random. Specifically, we derive a basis k1, . . . ,kn−m ∈ Fnq for
ker(H) by taking the rows rows of the matrix (M⊤|In−m). Then we sample
n − m random scalars c1, . . . , cm ∈ Fq using the PRG with seed kerseed and
domain separator dom = 0x10, and compute the resulting vector in ker(H) as
x′ =

∑n−m
i=0 ci ·ki. For an adversary, its advantage in distinguishing the output of

ExpandKernelVector from a random kernel vector is denoted by AdvPRExpandKernelVector.

ExpandPermutation(permseed) → Sn : Samples permutation π of length n uni-
formly at random. Specifically, we first construct a vector v = (v0, · · · , vn−1) =
(0, 1, · · · , n − 1). Then, we use the PRG with seed permseed and domain sepa-
rator dom = 0x20 for sampling a random vector e = (e0, · · · , en−1) ∈ (F16

2 )n.
We construct the vector p = (p0, · · · , pn−1), where the high-order and low-order
bits of pi corresponds ei and vi, respectively. Finally, we sort this integer se-
quence in constant time using djbsort [Ber19], and extract the permutation
π from the lower-order bits p. If there are any duplicate values in the vector
e, we discard it and restart the procedure. For an adversary, its advantage in
distinguishing the output of ExpandPermutation from a random permutation is
denoted by AdvPRExpandPermutation.

4.3 Hash functions and commitments

In the following, we instantiate functions from the SHA3 family, choosing the out-
put length according to the security parameter λ: for λ = 128 we use SHA3-256,
for λ = 192 we use SHA3-384, and for λ = 256 we use SHA3-512. Throughout, we
denote a binary string as x ∈ {0, 1}∗.

Pseudorandom Generators. We make use of two distinct pseudorandom gen-
erators, denoted by PRG1 and PRG2. Specifically, PRG1 is instantiated from ei-
ther the SHA3 family or Rijndael, while PRG2 is instantiated from either SHAKE
or Rijndael.

• PRG1(salt ∥ index ∥ seed) expands a seed into a binary tree according to
the GGM construction, producing outputs of length 2λ. The length of index
depends on the instantiation: 2 bytes for SHA3 and 4 bytes for AES/Rijndael.
Let salt = (salt0 ∥ salt1).

PRG1(salt ∥ index ∥ seed) := SHA3-λ(salt ∥ index ∥ seed ∥ dom)

PRG1(salt ∥ index ∥ seed) := (high ∥ low)
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where,

high =

{
AES-128(k = seed,msg = salt0 ⊕ (0x00 ∥ index ∥ dom)) if λ = 128

Rijndael-256(k = seed,msg = salt0 ⊕ (0x00 ∥ index ∥ dom)) otherwise.

low =

{
AES-128(k = seed,msg = salt0 ⊕ (0x01 ∥ index ∥ dom)) if λ = 128

Rijndael-256(k = seed,msg = salt0 ⊕ (0x01 ∥ index ∥ dom)) otherwise.

• PRG2(salt ∥ seed) converts seeds into instances for the Vole protocol, with
output length ℓ̂.

PRG2(salt ∥ seed) :=

{
SHAKE-128(salt ∥ seed ∥ dom) if λ = 128,

SHAKE-256(salt ∥ seed ∥ dom) if λ ∈ {192, 256}.

PRG2(salt ∥ seed) :=

{
AES-128(k = seed, msg = salt0 ⊕ (ctr ∥ z ∥ dom) if λ = 128,

Rijndael-256(k = seed, msg = salt0 ⊕ (ctr ∥ z ∥ dom) otherwise,

where ctr is a counter byte that starts from 0x00 and gets updated for every
block produced, and z = (0x00 ∥ 0x00 ∥ 0x00 ∥ 0x00).

In both cases, domain separation is enforced via an explicit tag dom ∈ 0x05, 0x06,
ensuring independence between PRG1 and PRG2. For the security level parameter
λ = 192, we extend salt0 to 256 bits by appending 0x00s, and we truncate the
output of Rijndael-256 to 192 bits.

Hash functions.

• H1 : {0, 1}∗ → {0, 1}2λ defined as

H1(x) := SHA3-λ(x ∥ dom), where dom = 0x01.

• H1
2 : {0, 1}∗ → {0, 1}5λ+8 defined as

H1
2(x) :=

{
SHAKE-128(x ∥ dom) if λ = 128, dom = 0x21,

SHAKE-256(x ∥ dom) if λ ∈ {192, 256}, dom = 0x21.

• H2
2 : {0, 1}∗ → {0, 1}2λ defined as

H2
2(x) := SHA3-λ(x ∥ dom), where dom = 0x22.

• H3
2 : {0, 1}∗ → {0, 1}τ0κ0+τ1κ1+w defined as

H3
2(x) :=

{
SHAKE-128(x ∥ dom) if λ = 128, dom = 0x23,

SHAKE-256(x ∥ dom) if λ ∈ {192, 256}, dom = 0x23.
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• H3 : {0, 1}∗ → {0, 1}3λ defined as

H3(x) :=

{
SHAKE-128(x ∥ dom) if λ = 128, dom = 0x03,

SHAKE-256(x ∥ dom) if λ ∈ {192, 256}, dom = 0x03.

• H4 : {0, 1}∗ → {0, 1}ρ(cn+n+m) defined as

H4(x) :=

{
SHAKE-128(x ∥ dom) if λ = 128, dom = 0x04,

SHAKE-256(x ∥ dom) if λ ∈ {192, 256}, dom = 0x04.

Commitments. For the commitments, we consider the two following approaches.

Commitment Com1. This scheme is instantiated from either the SHA3 family
or Rijndael. Let τ denote the subtree and n the index of the leaf in the GGM
tree array.

• SHA3 instantiation: we absorb τ as a single byte and n as two bytes.
• Rijndael instantiation: we concatenate τ and n into a 32-bit string (4 bytes).

We denote this combined value as index. Let salt = (salt0 ∥ salt1).

Option 1: SHA3 based commitment.

Com1(salt ∥ index ∥ seed) := SHA3-λ(salt ∥ index ∥ seed ∥ dom), where dom = 0x07.

Option 2: Rijndael-based commitment.

Com1(salt ∥ index ∥ seed) := (high ∥ low), where

high =

{
AES-128(k = seed,msg = salt0 ⊕ (0x00 ∥ index ∥ dom)) if λ = 128

Rijndael-256(k = seed,msg = salt0 ⊕ (0x00 ∥ index ∥ dom)) otherwise.

low =

{
AES-128(k = seed,msg = salt0 ⊕ (0x01 ∥ index ∥ dom)) if λ = 128

Rijndael-256(k = seed,msg = salt0 ⊕ (0x01 ∥ index ∥ dom)) otherwise.

For the security level parameter λ = 192, we extend salt0 to 256 bits by append-
ing 0x00s, and we truncate the output of Rijndael-256 to 192 bits. In all three
cases, we take dom = 0x07.
Commitment Com2. This scheme is derived from the SHA3 family

Com2(x) := SHA3-λ(x ∥ dom), where dom = 0x08.

4.4 VOLE-in-the-Head functions

The VOLE correlations form one of the foundational building block of our
scheme. In this section, we describe how to perform basic operations on VOLE
correlations and how to construct them from the batch all-but-one vector com-
mitments construction. We also explain how, within the scheme, the prover com-
mits to these VOLE correlations and checks their consistency.
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VOLE correlations. Let q = u∆ ⊕ v be a VOLE correlation with (u,v) ∈
F2 × F2µ , and (q, ∆) ∈ F2µ × F2µ .2 Such a generic VOLE correlation corre-
sponds to a linear (degree-1) commitment to u denoted as fu(X) = uX + v,
with the evaluation q = fu(∆) given to the verifier. From here onward in this
document, we denote degree-1 commitment to a bit u (or a bit-string u ∈ Fℓ̂2) by
JuK (or JuK respectively). This notion can be extended to polynomial-based com-
mitments with higher degree polynomials. We write JsK(d) to denote a degree-d
commitment to a secret value s ∈ F2 where the prover holds fs(X) =

∑d
i=0 aiX

i

with coefficients ai ∈ F2µ and ad equal to s lifted to F2µ while the verifier holds
qs = fs(∆) ∈ F2µ .

It is possible to compute arbitrary linear combinations of a given set of input
VOLE correlations, due to their linear homomorphic property. Algorithm 4.9
LinearCombination from [BBD+23b] given below shows how VOLE correlations
for linear functions of secret values u1, . . . , un ∈ F2 can be computed. In fact,
it is also possible to combine k VOLE correlations qi = ui∆ ⊕ vi, i ∈ [k] with
(ui,vi) ∈ F2 × F2µ and (qi, ∆) ∈ F2µ × F2µ for i ∈ [k], to obtain a single VOLE
correlation q = u∆ ⊕ v with (u,v) ∈ F2k × F2µ and (qi, ∆) ∈ F2µ × F2µ for
an arbitrary F2k ⊆ F2µ . To achieve this, the prover computes u :=

∑k−1
i=0 uiX

i

where
{
1, X, . . . ,Xk−1} is the power-basis of F2k over F2. Prover also computes

v as v :=
∑k−1
i=0 viX

i. While the verifier can compute q as q :=
∑k−1
i=0 qi∆

i

(and ∆ remains unchanged). We can perform homomorphic operations on the
degree-d-commitments locally by the prover and the verifier with the help of the
Algorithm 4.10 Add and Algorithm 4.11 Multiply given below. In the following,
let d1 ≥ d2 without loss of generality, also let d = d1 + d2.

Given a VOLE correlation q = u∆ + v for a random u ∈ F2, it is possible
to embed arbitrary value w ∈ F2. To do so, the prover computes t = w ⊕ u and
sends t to the verifier. Since u is uniform random and unknown to the verifier, t
does not leak any information about w. The verifier then computes qw = q+ t∆.
Note that the prover and verifier now possess their respective parts for the VOLE
correlation qw = w∆+v. After embedding the witness w, one can use the VOLE
correlations to establish PoK of the witness for relations which can be modeled
as polynomial functions of the commitment to the witness.

2 Here we consider ℓ̂ = 1 for readability and easy to read notation. Therefore, u and
∆ can be seen as scalars represented by 1 and µ-bits respectively. Whereas, v, q are
vectors of length µ over F2. All of the discussion in Section 4.4 naturally extends to
VOLE correlations with ℓ̂ > 1, where we view ∆ as a scalar represented by µ-bits,
u is a vector of length ℓ̂ over F2, and V ,Q are seen as ℓ̂× µ matrices over F2.
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Algorithm 4.9: LinearCombination
(
c0, c1, . . . , cn, (JuiK)i∈[1,n]

)
Prover’s computation: P.LinearCombination

(
c0, c1, . . . , cn, (JuiK)i∈[1,n]

)
Prover’s input: Coefficients of linear combination c0, c1, . . . , cn ∈ F2, VOLE correlation
inputs (u1, v1), . . . , (un, vn) ∈ (F2 × F2ρ )

n.

Prover’s output: VOLE correlations (u, v) for the linear combination of secret inputs.

Computes u := c0 +
∑n

i=1 ciui and v :=
∑n

i=1 civi.

Verifier’s computation: V.LinearCombination(c0, c1, . . . , cn, ∆, q1, . . . , qn)

Verifier’s input: Coefficients of linear combination c0, c1, . . . , cn ∈ F2, VOLE correlation
inputs ∆, q1, . . . qn ∈ Fn+1

2ρ

Verifier’s output: VOLE correlation q for linear combination of secret inputs.

Computes q := c0∆+
∑n

i=1 ciqi.

Algorithm 4.10: Add
(
Js1K(d1), Js2K(d2)

)
Public information:

Degrees of input VOLE correlations d1, d2.

Prover’s computation: P.Add
(

Js1K(d1), Js2K(d2)
)

Prover’s input: VOLE correlations represented as polynomials fs1 (X) and fs2 (X).

Prover’s output: VOLE correlation JsK(d1) for addition of secret inputs.

Computes JsK(d1) = fs(X) := fs1 (X) + fs2 (X)Xd1−d2 where s = s1 + s2.

Verifier’s computation: V.Add
(
∆, qs1 , qs2

)
Verifier’s input: ∆, qs1 = fs1 (∆), and qs2 = fs2 (∆)

Verifier’s output: VOLE correlation qs for addition of secret inputs.

Computes qs := qs1 + qs2∆
d1−d2 .
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Algorithm 4.11: Multiply
(
Js1K(d1), Js2K(d2)

)
Public information:

Degrees of input VOLE correlations d1, d2.

Prover’s computation: P.Multiply
(

Js1K(d1), Js2K(d2)
)

Prover’s input: VOLE correlations represented as polynomials fs1 (X) and fs2 (X).

Prover’s output: VOLE correlation JsK(d1) for multiplication of secret inputs.

Computes JsK(d) = fs(X) := fs1 (X)fs2 (X) where s = s1s2.

Verifier’s computation: V.Multiply
(
qs1 , qs2

)
Verifier’s input: qs1 = fs1 (∆) and qs2 = fs2 (∆)

Verifier’s output: VOLE correlation qs for multiplication of secret inputs.

Computes qs := qs1qs2 .

Committing to VOLE correlations. Recall that in order to achieve the
desired security level (soundness), the atomic zero-knowledge protocol based on
VOLE correlations should be repeated τ times. This means that the prover needs
to generate τ GGM trees instances (or a forest of τ GGM trees). Let Ne be num-
ber of leaves (or seeds to be committed to) in each of such τ trees for e ∈ [τ ] and
let N :=

∑τ−1
e=0 Ne. Recently authors of [BBM+25] showed how the communica-

tion cost of such commitments can be further reduced by using batch all-but-one
vector commitment (BAVC) schemes. The idea is to generate a single big GGM
tree with N leaves instead of τ individual trees per instance with Ne leaves each.
Note that in both cases (either with a forest of τ smaller trees or with single
unified tree) the prover needs to hide a total of τ leaves. Intuitively, opening all-
but-τ leaves of the unified tree is more efficient than opening all-but-one leaves
of τ smaller trees, if the leaves to be opened in the big tree are relatively close to
each other (or share some ancestor node in the tree). To achieve this, following
the authors of [BBM+25] we interleave the leaves of the τ instances. That is,
the first τ leaves of the big tree correspond to the first entry of the individual τ
vector commitments, the next τ leaves correspond to the second entries, and so
on. We also use a fixed threshold value Topen to ensure that the revealed path is
not too long (thus avoiding long signature sizes). The opening algorithm aborts
if the number of nodes exceeds Topen. This results in rejection sampling dur-
ing the opening, which reduces the entropy of the challenge space. Fortunately,
in [BBM+25] the authors showed that security is actually unaffected: since each
rejection sampling step results in the prover computing a hash function, which
can be considered as a proof of work done during each signing operation. We
refer the interested readers to [BBM+25] for further details.
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The batch BAVC consists of the following algorithms.

• Algorithm 4.1 called as VC.Commit generates a vector commitment using a
master seed mseed and a salt value salt as inputs with the help of length-
doubling salt based PRG PRG1. It outputs the leaves of the tree as seeds
{seede,i}τ,N , a commitment hcom to all the seeds and decommitment infor-
mation decom which consists of commitments {come,i}τ,N to individual seeds
and all intermediate nodes required to construct the unified GGM tree.

• Algorithm 4.2 VC.Open takes the decommitment information decom and the
index set i∗ of size τ corresponding to the indexes of the hidden leaves. It
outputs a partial decommitment pdecom which can be used to recompute
all-but-τ seeds in the GGM tree, along with τ commitments {come,i∗}τ,τ to
the hidden seeds.

• Algorithm 4.3 VC.Reconstruct on inputs the index set i∗ of size τ (same as
in VC.Open), pdecom, and salt value salt outputs all-but-τ seeds (hidden by
the indexes in i∗) by reconstructing the GGM tree, and also outputs the
commitment hcom to all the seeds.

In the following, we assume that N0 = . . . = Nτ0−1 ≥ Nτ0 = . . . = Nτ−1 for
some τ0 and define N as N :=

∑τ−1
e=0 Ne. We define ψ as

ψ(e, i) =

{
i · τ + e if i < Nτ0
Nτ0 · τ + (i−Nτ0) · τ0 + e otherwise

(1)

We also use {seede,i}τ,N :=
(
seed0,0, seed0,1, . . . , seed(τ−1),(Nτ−1−1)

)
to denote

an ordered tuple of N seeds where e ∈ [τ ] and i ∈ [Ne]. Similarly, we use
{come,i}τ,N :=

(
com0,0, com0,1, . . . , com(τ−1),(Nτ−1−1)

)
to denote an ordered tu-

ple of N commitments where e ∈ [τ ] and i ∈ [Ne]. We also use {come,i∗}τ,τ :=(
com0,i∗[0], com1,i∗[1], . . . , com(τ−1),i∗[τ−1]

)
to denote an ordered tuple of τ com-

mitments where e ∈ [τ ], and i∗ ∈ [N0]× [N1]× · · · × [Nτ−1] is an ordered list of
τ indexes corresponding to hidden leaves.

24



Algorithm 4.1: VC.Commit(mseed, salt)

Public information and inputs

Public information: A number of iterations τ , a number of parties N =
∑τ−1

e=0 Ne.

Prover’s input: A master seed mseed ∈ {0, 1}λ and a salt ∈ {0, 1}2λ

Output

N seeds {seede,i}τ,N ∈
(
{0, 1}λ

)N
, a commitment hcom ∈ {0, 1}2λ and a decommitment

auxilary variable decom.

1 : nodes[0] := mseed

2 : for i ∈ [N − 1]:

3 : (nodes[2i+ 1], nodes[2i+ 2]) := PRG1 (salt, nodes[i] :: 2λ)

4 : endfor

5 : for e ∈ [τ ]:

6 : for i ∈ [Ne]:

7 : seede,i := nodes[N − 1 + ψ(e, i)]

8 : come,i := Com1 (salt, seede,i :: 2λ)

9 : endfor

10 : endfor

11 : hcom := Com2

(
salt, (cmt0,0, . . . , cmt(τ−1),(Nτ−1−1)) :: 2λ

)
12 : return

(
{seede,i}τ,N , hcom, decom := (nodes, {come,i}τ,N )

)
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Algorithm 4.2: VC.Open(decom, i∗)

Public information and inputs

Public information: A number of iterations τ , a number of parties N =
∑τ−1

e=0 Ne, a rejection

parameter Topen

Prover’s input: A decommitment auxilary variable decom := (nodes, {come,i}τ,N ) and i∗ ∈

[N0]× [N1]× · · · × [Nτ−1] is an ordered list of τ indexes corresponding to hidden leaves.

Output

A sibling path pdecom and unopened commitments {come,i∗}τ,τ

// Selecting hidden leaves from interleaved tree

1 : hidden := {N − 1 + ψ(e, i∗[e]) : e ∈ [τ ]}

2 : revealed := {N − 1, . . . , 2N − 2}\hidden

3 : for i from N − 2 downto 0 :

// Adding parent node to revealed if both children nodes are in revealed.

4 : if (2i+ 1) ∈ revealed and (2i+ 2) ∈ revealed :

5 : revealed := (revealed\{2i+ 1, 2i+ 2}) ∪ {i}

6 : endfor

7 : if len(revealed) > Topen :

8 : return ⊥

9 : pdecom := ∅

10 : for i ∈ [2N − 1] :

11 : if i ∈ revealed :

12 : pdecom := (pdecom ∥ nodes[i])

13 : endfor

14 : return (pdecom, {come,i∗}τ,τ )
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Algorithm 4.3: VC.Reconstruct
(
i∗, pdecom, {come,i∗}τ,τ , salt

)
Public information and inputs

Public information: A number of iterations τ , a number of parties N =
∑τ−1

e=0 Ne.

Verifier’s input: An ordered list i∗ ∈ [N0] × [N1] × · · · × [Nτ−1] of τ indexes corresponding

to hidden leaves, a sibling path pdecom and unopened commitments {come,i∗}τ,τ

Output

A commitment hcom ∈ {0, 1}2λ, and {seede,i}τ,N :=
(
seed0,0, seed0,1, . . . , seed(τ−1),(N−1)

)
to denote an ordered tuple of N seeds where e ∈ [τ ] and i ∈ [Ne]. Note that the τ

seeds corresponding to the hidden leaves denoted by an ordered tuple {seede,i∗}τ,τ :=(
seed0,i∗[0], seed1,i∗[1], . . . , seed(τ−1),i∗[τ−1]

)
are set to ⊥.

// Selecting hidden leaves from interleaved tree

1 : hidden := {N − 1 + ψ(e, i∗[e]) : e ∈ [τ ]}

2 : revealed := {N − 1, . . . , 2N − 2}\hidden

3 : for i from N − 2 downto 0 :

// Adding parent node to revealed if both children nodes are in revealed.

4 : if (2i+ 1) ∈ revealed and (2i+ 2) ∈ revealed :

5 : revealed := (revealed\{2i+ 1, 2i+ 2}) ∪ {i}

6 : endfor

// Check if pdecom is well formed by checking that number of nodes

// in revealed matches with pdecom and is ≤ Topen.

7 : if len(revealed) ̸= len(pdecom) or len(revealed) > Topen :

8 : return ⊥

9 : endif

10 : nodes[0], . . . , nodes[2N − 2] := ∅, . . . , ∅

11 : for i ∈ [N − 1] :

12 : if i ∈ revealed :

13 : (nodes[i], pdecom) := pdecom

14 : if nodes[i] ̸= ∅ :

15 : nodes[2i+ 1], nodes[2i+ 2] := PRG1 (salt, nodes[i] :: 2λ)

16 : endfor

17 : for e ∈ [τ ] :

18 : for i ∈ [Ne] :

19 : if i ̸= i∗[e] :

20 : seede,i := nodes[N − 1 + ψ(e, i)]

21 : come,i := Com1 (salt, seede,i :: 2λ)

22 : else :

23 : seede,i := ⊥

24 : come,i := come,i∗[e]

25 : endfor

26 : endfor

27 : hcom := Com2

(
salt, (cmt0,0, . . . , cmt(τ−1),(Nτ−1−1)) :: 2λ

)
28 : return (hcom, {seede,i}τ,N )

27



Computing VOLE from seed. The N seeds committed via the vector com-
mitments are then converted to VOLE correlations using the algorithms specified
below. Note that we use the exact same algorithm Algorithm 4.4 ConvertToV-
OLE as [Roy22, BBD+23b] for this conversion which uses divide-and-conquer
approach to compute the VOLE correlations iteratively. The only difference is
sometimes we lift the elements from F2κ to F2µ to ensure that the finite field
arithmetic between objects is compatible.

The signing algorithm PERK.Sign uses the outputs of vector commitment
and ConvertToVOLE algorithms to commit to τ instances of VOLE correlations.
This is achieved by Algorithm 4.5 VOLECommit which creates τ instances of
VOLE correlations by running ConvertToVOLE τ times. It then also computes
the correction values ce for e ∈ [1, . . . , τ − 1] and outputs the VOLE signers
correlation inputs u,V , correction vales ce for e ∈ [1, . . . , τ−1], and commitment
and decommitment information from vector commitment.

The challenge decoding algorithm Algorithm 4.6 ChallDec takes an input
challenge string ch of length log(N) where N is the number of leaves in the GGM
tree, and outputs an index set i∗ indicating the indexes of the hidden leaves. i∗
is computed by parsing τ chunks of input ch and converting them to an integer
∈ [Ne] for e ∈ [τ ]. ChallDec is used by both signer to create opening information
for the verifier and by the verifier to reconstruct the VOLE correlation inputs
from the GGM tree.

Algorithm 4.7 VOLEReconstruct is used by the verifier to compute its VOLE
correlation inputs Q and ∆. The values of ∆ is computed from the indexes of i∗
obtained by running the ChallDec procedure. And Q is computed by reconstruct-
ing the committed seeds from the GGM tree with the help of VC.Reconstruct.
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Algorithm 4.4: ConvertToVOLE
(
Ne∗ , (seede∗,i)i∈[Ne∗ ]

, salt, µ :: ℓ̂
)

Public information and inputs

Inputs: A number of parties Ne∗ = 2κ, a tuple of Ne∗ seeds
(
seede∗,i

)
i∈[Ne∗ ]

∈ ({0, 1}λ)Ne∗

for some fixed e∗ ∈ [τ ], a salt ∈ {0, 1}2λ, and ℓ̂ ∈ N denoting the number of VOLE

correlations output by the function. Recall that ℓ̂ := ℓVOLEHashMask + ℓ+ ℓCZMask.

Output

Outputs ℓ̂ VOLE correlations (uk,vk) ∈ F2 × F2µ for k ∈ [ℓ̂], All these VOLE correlations

can be seen as linear (degree-1) polynomials, JukK = fuk
(X) := ukX + vk ∈ F2µ [X].

1 : κ := log2(Ne∗ )

2 : if seed0 =⊥ :

3 : r0,0 := 0ℓ̂

4 : else :

5 : r0,0 := PRG2

(
salt, seede∗,0 :: ℓ̂

)
6 : for i ∈ [1, N − 1] :

7 : r0,i := PRG2(salt, seede∗,i :: ℓ̂)

8 : endfor

9 : v0 = · · · = vκ−1 := 0ℓ̂

10 : for j ∈ [κ] :

11 : for i ∈ [
Ne∗
2j+1 ] :

12 : vj := vj ⊕ rj,2i+1

13 : rj+1,i := rj,2i ⊕ rj,2i+1

14 : endfor

15 : endfor

16 : u := rκ,0

17 : if µ > κ:

18 : for i ∈ [µ− κ]:

19 : vκ+i = 0ℓ̂

20 : endfor

21 : return (u,v0, . . . , vκ−1,vκ, . . . , vµ−1)

22 : else :

23 : return (u,v0, . . . , vκ−1) // This will happen only if µ = κ.
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Algorithm 4.5: VOLECommit
(
mseed, salt :: ℓ̂

)
Public information and inputs

Public information: A number of iterations τ , a number of parties N :=
∑τ−1

e=0 Ne, ke :=

log2(Ne) ∈ {κ0, κ1}, ρ := µ0τ
′
0 + µ1τ

′
1

Prover’s input: A master seed mseed ∈ {0, 1}λ and a salt ∈ {0, 1}2λ, a length ℓ̂ ∈ N

Output

Prover’s output: A commitment hcom ∈ {0, 1}2λ, a decommitment auxilary variable decom,

VOLE corrections (c1, . . . , cτ−1), VOLE correlation secrets u ∈ Fℓ̂
2, VOLE correlation

v-vectors V ∈ Fℓ̂×ρ
2

1 :
(
{seede,i}τ,N , hcom, decom := (nodes, {come,i}τ,N )

)
:= VC.Commit(mseed, salt)

2 : for e ∈ [τ ] :

3 : (ue,ve,0, . . . , ve,µe−1) := ConvertToVOLE(Ne, (seede,i)i∈[Ne], salt, µe :: ℓ̂)

4 : Ve := [ve,0 · · ·ve,µe−1] ∈ Fℓ̂×µe
2

5 : endfor

6 : V := [V0 · · ·Vτ−1] ∈ Fℓ̂×ρ
2

7 : u := u0

8 : for e ∈ [1, τ − 1] :

9 : ce := u⊕ ue

10 : endfor

11 : return (hcom, decom, c1, . . . , cτ−1,u,V ).

Algorithm 4.6: ChallDec(ch)

Public information and inputs

Public information: A number of iterations τ , a number of parties N =
∑τ

e=1Ne, κe =

log2(Ne)

Inputs: A challenge ch ∈ {0, 1}τ0κ0+τ1κ1

Output

An ordered index set i∗ := (i∗0 , . . . , i
∗
τ−1) ∈ [N0]× [N1]× · · · × [Nτ−1] of size τ .

1 : lo := 0

2 : for e ∈ [τ ]:

3 : i∗e := NumRec(κe, ch[lo : lo + κe − 1])

4 : lo := lo + κe

5 : endfor

6 : return i∗ := (i∗0 , . . . , i
∗
τ−1)
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Algorithm 4.7: VOLEReconstruct
(
i∗, pdecom, {come,i∗}τ,τ , salt

)
Public information and inputs

Public information: A number of iterations τ , a number of parties N =
∑τ−1

e=0 Ne.

Verifier’s input: An ordered list i∗ ∈ [N0] × [N1] × · · · × [Nτ−1] of τ indexes corresponding

to hidden leaves, a sibling path pdecom, unopened commitments {come,i∗}τ,τ , and a salt ∈

{0, 1}2λ.

Output

A commitment hcom ∈ {0, 1}2λ, and verifier’s VOLE correlation inputs Q′ :=

[Q′
0 · · ·Q

′
τ−1] ∈ Fℓ̂×ρ

2

1 : out := VC.Reconstruct
(
i∗, pdecom, {come,i∗}τ,τ , salt

)
2 : if out = ⊥ :

3 : return ⊥

4 : else :

5 : Parse out as out := (hcom, {seede,i}τ,N ).

6 : for e ∈ [τ ]

7 : ∆e := i∗[e]

8 : for i ∈ [Ne]: seed′e,i := seede,i⊕∆e // permute seede,i by using ∆e

9 : (u′
e, qe,0, . . . , qe,µe−1) := ConvertToVOLE(Ne, (seed

′
e,i)i∈[Ne], salt, µe :: ℓ̂)

10 : Q′
e := [qe,0 · · · qe,µe−1] ∈ Fℓ̂×µe

2

11 : endfor

12 : return (hcom,Q
′
0, . . . ,Q

′
τ−1).

Ensuring VOLE consistency. It is crucial for the verifier to ensure that the
correction values ce sent by the prover are consistent with the committed VOLE
correlation input u0. The verifier ensures this by asking the prover to compute a
random linear universal hash. In this section, we explain this process in detail.3
We begin by defining family of linear universal hash functions, since it will be
used to conduct the consistency checks.

Definition 4.1 (Linear universal hash functions). A family of linear hash
functions is a family of matrices H ⊆ Fr×nq . The family is ε-almost universal, if

3 This technique is independent of the underlying PoK scheme or signature scheme
since this generically helps the verifier to check the consistency of the VOLE correla-
tions committed by the prover. Therefore, in PERK we use the exact same techniques
and algorithm for these checks as those implemented in FAEST [BBD+23b]. Due
to this reason we simply (re)state important definitions, propositions, and lemmas
which are essentially same as those presented in [BBD+23b].
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for any x ∈ Fnq \ {0},

Pr
[
Hx = 0 : H

$←− H
]
≤ ε.

The family is ε-almost uniform, if for any x ∈ Fnq \ {0} and for any v ∈ Frq,

Pr
[
Hx = v : H

$←− H
]
≤ ε.

In order to preserve the zero-knowledge property when the hash outputs are
shared with the verifier, the hashes used in PERK must also satisfy the hiding
property given below.

Definition 4.2. A matrix H ∈ Fr×(h+n)q is Fnq -hiding if for v[0, h − 1]
$←− Fhq

the distribution of Hv is independent from v[h, n+ h− 1]. A hash family H ⊆
Fr×(h+n)q is Fnq -hiding if every H ∈ H is Fnq -hiding.

Proposition 4.1. Let H ⊆ Fr×nq be ε-almost uniform hash family. Let H′ ⊆
Fr×(r+n)q be the family {[Ir H] : H ∈ H}, where Ir is the r× r identity matrix.
Then, (a) H′ is ε-almost universal, and (b) H′ is Fnq -hiding.

Proof. Let x :=

[
x0

x1

]
be non-zero, with x0 ∈ Frq and x1 ∈ Fnq . If H ′ ∈ H′ then,

H ′x = 0 implies that −x0 = Hx1. Since x0 and x1 cannot be equal to zero
simultaneously (because x is non-zero), this implies that x1 ̸= 0. Therefore from
ε-almost uniform property of H, we can conclude that H′ is ε-almost universal.
The hiding property of H′ holds because when the first r elements (x0) of the
input are chosen uniformly at random then they perfectly mask the rest of the
output component Hx1. ⊓⊔

Standard constructions of linear universal hash families. Following [BBD+23b]
we also use the matrix hash family and polynomial-based hash family as building
blocks of our VOLE consistency checks [CW79,BJKS94]. The matrix hash family
H = Fr×nq is q−r-almost uniform. In polynomial-based hash, the input x ∈ Fnq
is seen as the coefficients of a polynomial with degree ≤ n− 1. Sampling a hash
function is implemented by evaluating such a polynomial at a uniform random
point in Fq. Since the polynomial has at most n− 1 roots, the polynomial hash
family is n−1

q -almost universal. If the random point is chosen from a set S with
cardinality |S|, then the polynomial hash family is n−1

|S| -almost universal.

Composition and truncation of hashes. We also recall the properties of composi-
tion and truncation of hashes originally proved by the authors of [Sti92,Roy22,
BBD+23b]. These properties will be useful in proving that the prover can suc-
cessfully bypass the consistency check for VOLE correlations with extremely low
probability.
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Proposition 4.2. Let H and H′ be two independent ε and ε’-almost universal

hash families respectively. Then the concatenation
{[

H
H ′

]
: H ∈ H,H ′ ∈ H′

}
is εε’-almost universal.

Proof. This holds true because of the independence of H and H′. ⊓⊔

Proposition 4.3. Let H ⊆ Fr′×nq be ε-almost universal and H′ ⊆ Fr×r′q be ε′-
almost uniform. Then the product {H ′H : H ∈ H,H ′ ∈ H′} is (ε + ε′)-almost
uniform.

Proof. Let x ∈ Fnq \{0}. Then Pr[x′ ̸= 0 : x′ = Hx] ≥ 1−ε since H is ε-almost
universal. For x′ ̸= 0, Pr

[
H ′x′ ̸= v : v ∈ Frq

]
≥ 1−ε′ asH′ is ε′-almost uniform.

Therefore Pr[H ′Hx ̸= v] ≥ (1− ε)(1− ε′) ≥ 1− ε− ε′, which implies that the
product is (ε+ ε′)-almost uniform. ⊓⊔

Proposition 4.4. Let δ ∈ N and H ⊆ Fr×nq be ε-almost uniform hash family.
Then, the truncated family {H0,r−δ−1 : H ∈ H}, where H0,r−δ−1 denotes the
first (r − δ) rows of H, is εqδ-almost uniform.

Proof. For each H ∈ H, let H :=

[
H0

H1

]
where H0 ∈ F(r−δ)×n

q and H1 ∈ Fδ×nq .

Let x ∈ Fnq be a non-zero vector, and y :=

[
y0

y1

]
∈ Frq. If H

$←− H, then

Pr[Hx = y] ≤ ε. We can then apply conditional probability to obtain,

Pr[Hx = y] ≤ ε
Pr[H0x0 = y0 ∧H1x1 = y1] ≤ ε

Pr[H0x0 = y0] · Pr[H1x1 = y1 |H0x0 = y0 ] ≤ ε
Pr[H0x0 = y0] ≤ ε · Pr[H1x1 = y1 |H0x0 = y0 ]

−1

≤ εqδ

where the final inequality comes from fixing a y1 ∈ Fδq, that maximizes p :=

Pr[H1x1 = y1 |H0x0 = y0 ], which implies p is at least q−δ. ⊓⊔

VOLE universal hash. In order to verify the consistency of VOLE correlation
inputs in Fℓ̂2, we need a hash family that is linear over F2. Also recall that,
ℓ̂ := ℓVOLEHashMask + ℓ + ℓCZMask, where ℓVOLEHashMask := λ + B, and B = 16 is
a parameter chosen for security. 4 To compute the hash, we start by mapping
the seed seed into (r0, r1, r2, r3, s, t) ∈ F5

2λ × F264 . The input x ∈ Fℓ̂2 is split into

4 Similar to [BBD+23b] PERK actually calls VOLEHash on inputs represented as ℓ̂×ρ
matrix, which is translated into computing the hash on each column separately, with
the same seed.
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(x0,x1), where x1 ∈ Fℓ+ℓCZMask
2 , and then x1 is parsed twice, first as a vector ŷ

of F2λ elements, and then as a vector y of F264 elements. 5 Then compute,

h0 := ŷ0s
ℓ̂
λ−1 + ŷ1s

ℓ̂
λ−2 + · · ·+ ŷ ℓ̂

λ−2
s+ ŷ ℓ̂

λ−1
∈ F2λ ,

h1 := y0t
ℓ̂
64−1 + y1t

ℓ̂
64−2 + · · ·+ y ℓ̂

64−2
t+ y ℓ̂

64−1
∈ F264

Viewing h1 as an element of F2λ (by padding zeros), the hash is then com-
puted in F2λ as, [

h2
h3

]
:=

[
r0 r1
r2 r3

] [
h0
h1

]
Finally we take the first ℓVOLEHashMask (i.e. λ + B) bits of the concatenation

of the field elements h2 and h3, and XOR it with x0. We argue security of
this construction below (same as [BBD+23b]). Like [BBD+23b], we also aim for
ε := 2−ℓVOLEHashMask = 2−λ−B , with B = 16, in order to compensate for

(
τ
2

)
security

loss shown by [BBD+23c].

Lemma 4.1. VOLEHash is an εv-almost universal hash family in FℓVOLEHashMask×ℓ̂
2 ,

for εv = 2−ℓVOLEHashMask
(
1 + 2B−50

)
, if ℓ̂ ≤ 213. Furthermore, VOLEHash is Fℓ+ℓCZMask

2 -
hiding.

Proof. We show εv-almost uniform property of the hash that outputs the first
ℓVOLEHashMask (i.e. λ+B) bits of (h2, h3), that is without adding x0. By Propo-
sition 4.1, this implies the hiding and εv-almost universal property of the final
hash. The first part of the hash which computes h0, h1, is a concatenation of
two polynomial hashes, over either F2λ or F264 . These are ε-almost universal
with ε = d

|F| , where d is the degree of the polynomial and F is the field, and we

have d ≤ ℓ̂
64 . Both these hashes are F2-linear, as the binary field multiplication

is bilinear over F2. Thus, applying Proposition 4.2 we get that the concatena-
tion of the two polynomial hashes is then ε0-almost universal with ε0 ≤ ℓ̂2

2λ+76 .
Therefore, for ℓ̂ ≤ 213, we have ε0 ≤ 2−λ−50.

The second part of the hash starts with a 2× 2 matrix hash, which is 2−2λ-
almost uniform. After the truncation, the result is ε1-almost uniform for ε1 =
2−ℓVOLEHashMask due to the Proposition 4.4. The final combined hash is a product
of these two parts, so from Proposition 4.3 and summing the probabilities, we
get that for all ℓ̂ ≤ 213, the hash is εv-almost uniform for εv = ε0 + ε1 ≤
2−ℓVOLEHashMask

(
1 + 2B−50

)
. ⊓⊔

Following algorithms help prove consistency of the VOLE correlations.

5 In order to allow for better parsing in PERK we swap the order of x0 and x1

from [BBD+23b]. That is x0 serves as a mask in PERK, where as [BBD+23b] uses
x1 as a mask.
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Algorithm 4.8: VOLEHash(seed,x :: ℓVOLEHashMask)

Public information and inputs

Inputs: A seed, represented as a tuple (r0, r1, r2, r3, s, t) ∈ {0, 1}5λ+64, and a vector to be

hashed x ∈ {0, 1}ℓ̂, represented as a pair (x0,x1) ∈ {0, 1}ℓVOLEHashMask × {0, 1}ℓ+ℓCZMask

Output

A VOLE hash h ∈ {0, 1}ℓVOLEHashMask

1 : ri := ToField(ri, λ) for i ∈ [4]

2 : s := ToField(s, λ)

3 : t := ToField(t, 64)

4 : ℓ′ := λ⌈(ℓ+ ℓCZMask)/λ⌉

5 : x1 := x1∥0ℓ
′−(ℓ+ℓCZMask) (pad to multiple of λ)

6 : ŷ := ToField(x1, λ)

7 : y := ToField(x1, 64)

8 : h0 :=
∑ℓ′/λ−1

i=0 sℓ
′/λ−1−iŷ[i]

9 : h1 :=
∑ℓ′/64−1

i=0 sℓ
′/64−1−iy[i]

10 : h′
1 := ToField(ToBits(h1)∥0λ−64, λ)

11 : (h2, h3) := (r0h0 + r1h
′
1, r2h0 + r3h

′
1)

12 : h := (ToBits(h2)∥ToBits(h3)[0..ℓVOLEHashMask − 1])⊕ x0

13 : return h
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4.5 Proof of Knowledge functions

In this section, we present the various algorithms used by the prover and by the
verifier to prove (respectively verify) the knowledge of the secret permutation
which serves as solution to the PKP instance defined by the public key. This is
achieved with help of VOLE correlations created as described in Section 4.4, and
then using such VOLE correlations to compute linear functions over polynomials
to ascertain that different constraints related to the elementary vector structure,
and the satisfiability of the PKP solution are fulfilled by these polynomials.

The prover begins by proving the knowledge of elementary vectors of length
4 or 2, and then generates polynomials corresponding to the rows of the secret
permutation matrix by computing the tensor products of these smaller elemen-
tary vectors. In order to prove the elementary structure of the length 4 (or length
2) vector, the prover needs to show that following constraints are obeyed by the
underlying vector:

1. For a vector e := [e0, e1, e2, e3] ∈ F4
2 the product e0 ·e1 = 0 and e2 ·e3 = 0 si-

multaneously. In case of elementary vector e := [e0, e1] ∈ F2
2 this is achieved

simply by showing e0 · e1 = 0.

2. Additionally, the prover should also prove that e0⊕ e1⊕ e2⊕ e3 = 1 (respec-
tively e0 ⊕ e1 = 1).

Note that proving constraint 2, actually allows for optimization leading to
saving of a single bit per elementary vector. The prover simply sends 3 bits (or
1 bit) and the remaining bit of the elementary is computed by the verifier as:
e3 := 1⊕ e0 ⊕ e1 ⊕ e2 (respectively e1 := 1⊕ e0). The algorithms algorithm 4.9
CompWit and algorithm 4.10 ExpWit describe this process, these algorithms are
used by the prover and the verifier respectively.
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Witness Compression and Expansion

Algorithm 4.9: CompWit(w′)

Public information and inputs

Public information: Compress input wit-

ness w′ into shorter witness w by drop-

ping bits.

1 : Initialize w := ε

2 : if len(w′) = 12:

// Parse w′ as w′ := w′
0||w

′
1||w

′
2

// where,

// w′
i := w′

i,0||w
′
i,1||w

′
i,2||w

′
i,3.

3 : for i ∈ [3]:

4 : for j ∈ [3]:

5 : wi,j := w′
i,j

6 : endfor

7 : endfor

8 : assert (len(w) = 9)

9 : return w

10 : elseif len(w′) = 14:

// Parse w′ as

// w′ := w′
0||w

′
1||w

′
2||w

′
3

// with w′
i defined as in line 2

// for i ∈ [3] and

// w′
3 := w′

3,0||w
′
3,1.

11 : w := CompWit
(
w′

0||w
′
1||w

′
2

)
12 : w := w||w′

3,0

13 : assert (len(w) = 10)

14 : return w

15 : else :

16 : return ⊥.

17 : endif

Algorithm 4.10: ExpWit(w)

Public information and inputs

Public information: Expand compressed in-

put witness w into witness w′.

1 : Initialize w′ := ε

2 : if len(w) = 9:

// Parse w as

// w := w0,0|| · · · ||wi,j || · · · ||w2,2.

// For i ∈ [3] and j ∈ [3].

3 : for i ∈ [3]:

4 : w′
i,3 := 1

5 : for j ∈ [3]:

6 : w′
i,j := wi,j

7 : w′
i,3 := w′

i,3 ⊕ wi,j

8 : w′ := w′||w′
i,j

9 : endfor

10 : w′ := w′||w′
i,3

11 : endfor

12 : assert (len(w′) = 12)

13 : return w′

14 : elseif len(w) = 10:

// Parse w as

// w := w̃||w3,0, and

// w̃ := w0,0|| · · · ||wij || · · · ||w2,2.

// For i ∈ [3] and j ∈ [3].

15 : w′ := ExpWit(w̃)

16 : w′ := w′||w3,0||(1⊕ w3,0)

17 : assert (len(w′) = 14)

18 : return w′

19 : else :

20 : return ⊥.

21 : endif

Prover. In this section we present all the algorithms that will be used by the
prover (signer) to produce the proof of knowledge. The prover begins by encod-
ing each row of the secret permutation matrix into smaller elementary vectors.
Algorithms EncPosArrayToWitness and PosToWitness together take an input po-
sition corresponding to the non-zero element in a row of permutation matrix,
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and output its corresponding unique witness encoded as blocks of elementary
vectors. Let ei be an elementary vector of length 4, generated by shifting the
bit-string ‘0001’ to left by i positions. Therefore, e0 := ‘0001’, e1 := ‘0010’,
e2 := ‘0100’, and e3 := ‘1000’. Also, let e′b be an elementary vector of length
2, generated by shifting the bit-string ‘01’ to left by either b positions for
b ∈ {0, 1}. Therefore, e′0 := ‘01’ and e′1 := ‘10’.

Algorithm 4.11 EncPosArrayToWitness takes the unique encoded position ar-
ray [i, j, k] corresponding to some position pos ∈ [64] generated from EncodeNum-
64, and outputs its corresponding unique witness w′ := ek||ej ||ei ∈ F12

2 .
Algorithm 4.12 PosToWitness on an input position pos, first computes the

unique encoded position array encPosArray corresponding to pos by calling En-
codeNum. If encPosArray contains exactly 3 elements then, PosToWitness outputs
corresponding unique witness for pos as w′ := ek||ej ||ei ∈ F12

2 by subsequently
calling EncPosArrayToWitness. Otherwise if encPosArray := [i, j, k, b] contains ex-
actly 4 elements then, it computes ek||ej ||ei as described above. It then outputs
corresponding unique witness for pos as w′ := e′b||ek||ej ||ei ∈ F14

2 .

Next, the prover creates the VOLE correlations that will be used in proof
generation, by embedding the witness (now represented as elementary vectors).
This is achieved by Algorithm 4.13 EmbedWitnessBlock which takes the witness
generated by PosToWitness as input and embeds it block-by-block inside ran-
dom VOLE correlation also given as inputs. The output of this algorithm are
the VOLE correlations Jβ′iK corresponding to the elementary blocks of witness.
Algorithm 4.14 EmbedWitness aggregates the VOLE correlations embedding the
witness from individual elementary vectors of lengths 4 and 2, and outputs VOLE
correlations Jβ′K corresponding to the aggregation of 3 elementary vectors of
lengths 4 (and in case of L3 and L5 parameters, another elementary vector of
length 2).

Once the prover possesses the VOLE correlations (linear polynomials) corre-
sponding to the elementary vector entries, it then computes the degree-d VOLE
correlations (degree-d polynomials) corresponding to each individual row of the
secret permutation matrix with help of Algorithm 4.16 TensorProductToElemen-
taryVector, which internally calls Algorithm 4.15 TensorProduct to compute the
tensor product between two blocks. At this stage the prover has computed n

polynomials per row each of degree d, JzK(d) := (Jz0K
(d)
, . . . , Jzn−1K

(d)
) which

are the VOLE correlations corresponding to the rows of the secret permutation
matrix, viewed as an elementary vector of length n. The Algorithm 4.17 VOLE-
ElementaryVector produces the VOLE correlations JzK(d) along with intermediate
values Jβ′K, and masked witness t which will be sent to the verifier.

After obtaining the VOLE correlations for each of the n rows by running
Algorithm 4.17 VOLE-ElementaryVector n times, the prover further computes
extra n degree-d polynomials, JColCheckjK

(d) which ensure that each column of
secret matrix adds upto exactly 1. This is described in Algorithm 4.18 VOLE-
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Permutation. The check that columns add upto exactly 1 along with the ele-
mentary structure of the individual rows is sufficient to prove the permutation
structure of the secret matrix.

The prover proves the elementary structure by computing the polynomials
which have leading coefficient equal to 0 if and only if constraint 1 mentioned
above (e0 · e1 = 0 and e2 · e3 = 0) is satisfied using Algorithm 4.19 Check-
ElementaryBlock, and Algorithm 4.20 Check-ElementaryVector.

So far we have seen that, the prover has generated many degree-d polyno-
mials, which should all have leading coefficients equal to 0. In order to verify,
this the prover needs to send these polynomials to the verifier which can then
evaluate them at a random point of its choice and check if the all the leading
coefficients are equal to zero as expected. However, sending so many degree-d
polynomials is inefficient, the prover can instead send a single degree-d polyno-
mial by taking a random linear combination of all the polynomials, where the
coefficients of the random linear combination are chosen by the verifier.

Note that, in order to convince the verifier the prover still needs to send
a degree-d polynomial to the verifier whose leading coefficient is supposed to
be zero. However, since all these polynomials are computed by taking tensor
products and other linear functions of secret witness (embedded in the VOLE
correlations), each coefficient of this polynomial obtained by the prover contains
information about the secret. As the prover only needs to reveal that leading
coefficient is zero, it should add a masking polynomial to blind the remaining
coefficients. The Algorithm 4.21 CheckZero achieves this and outputs a masked
polynomial with leading coefficient equal to zero which can be used by the veri-
fier.

Finally, the Algorithm 4.22 Check-PKP puts all of the checks for checking the
elementary structure of rows (blocks), column sums equaling to 1, and satisfia-
bility of PKP equation together by computing degree-d polynomials with zero
as leading coefficients if and only if these constraints are satisfied. These polyno-
mials are then merged together into a single polynomial by computing (verifier
dictated) random linear combination, which is then masked with the help of
Algorithm 4.21 CheckZero. As a result, the prover should send the masked wit-
ness t obtained from Algorithm 4.18 VOLE-Permutation along with the masked
polynomial proof output by Algorithm 4.22 Check-PKP to the verifier.

39



Algorithm 4.11: EncPosArrayToWitness(encPosArray)

Public information and inputs

Public information: Given encoded position array encPosArray of length 3 with all input

elements in [4], outputs its corresponding unique witness w′ ∈ {0, 1}12 with hamming

weight 3.

1 : Initialize w′ := ε // Empty string

2 : if len(encPosArray) = 3 :

// Parse encPosArray as encPosArray := [i, j, k] with i, j, k ∈ [4], else output error.

3 : for index ∈ [3]:

4 : w′
index := LeftShift (‘0001’, encPosArray[index])

5 : w′ := w′||w′
index

6 : endfor

7 : assert (len(w′) = 12)

8 : return w′

9 : else :

10 : return ⊥

11 : endif
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Algorithm 4.12: PosToWitness(pos)

Public information and inputs

Public information: Given secret input pos outputs its corresponding unique witness w′.

1 : encPosArray := EncodeNum (pos)

Security Level 1

2 : if len(encPosArray) = 3 :

3 : w′ := EncPosArrayToWitness (encPosArray)

4 : return w′

Security Levels 3 and 5

5 : elseif len(encPosArray) = 4 :

6 : w′ := EncPosArrayToWitness (encPosArray[0 : 2])

7 : w′
3 := LeftShift (‘01’, encPosArray[3])

8 : w′ := w′||w′
3

9 : assert (len(w′) = 14)

10 : return w′

11 : else :

12 : return ⊥

13 : endif
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Algorithm 4.13: P.EmbedWitnessBlock
(
w′i, (JukK)k∈[3]

)
Public information and inputs

Public information: Length of the witness block = 4.

Prover’s input: ith secret witness block w′
i := w′

i,0||w
′
i,1||w

′
i,2||w

′
i,3 ∈ F4

2, 3 VOLE correla-

tions JukK for random (uk, vk) ∈ F2 × F2ρ represented as polynomials fuk
(X) = ukX + vk

for k ∈ [3].

Output

Prover’s output: VOLE correlations Jβ′
iK :=

(
Jβ′

i,0K, Jβ′
i,1K, Jβ′

i,2K, Jβ′
i,3K
)
, where Jβ′

i,jK ∈

F2 × F2ρ for j ∈ [4].

Construct VOLE correlations with witness

1 : // Parse w′
i as w′

i := w′
i,0||w

′
i,1||w

′
i,2||w

′
i,3.

2 : for j ∈ [3]:

3 : β′
i,j(X) := w′

i,jX + vj // β′
i,j are polynomials with coefficients in F2ρ .

4 : endfor

5 : β′
i,3(X) := w′

i,3X + v0 + v1 + v2

6 : Jβ′
iK :=

(
Jβ′

i,0K, Jβ′
i,1K, Jβ′

i,2K, Jβ′
i,3K
)

7 : return Jβ′
iK
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Algorithm 4.14: P.EmbedWitness
(
w′, (JukK)k∈[ℓrow]

)
Public information and inputs

Public information: Length of the expanded secret witness |w′| := 2ℓrow − 6.

Prover’s input: Secret witness w′ ∈ F(2ℓrow−6)
2 , ℓrow VOLE correlations JukK for random

(uk, vk) ∈ F2 × F2ρ represented as polynomials fuk
(X) = ukX + vk for k ∈ [ℓrow].

Output

Prover’s output: (2ℓrow − 6) VOLE correlations Jβ′K with elements in F2 × F2ρ .

Construct VOLE correlations with witness

1 : if len(w′) = 12: // Security level 1

// Parse w′ as w′ := w′
0||w

′
1||w

′
2, where, w′

i := w′
i,0||w

′
i,1||w

′
i,2||w

′
i,3.

2 : for i ∈ [3]:

3 : Jβ′
iK := P.EmbedWitnessBlock

(
w′

i, (JukK)k∈[3i,3i+2]

)
4 : endfor

5 : Jβ′K :=
(
Jβ′

0K, Jβ′
1K, Jβ′

2K
)

6 : return Jβ′K

7 : elseif len(w′) = 14: // Security levels 3 and 5

// Parse w′ as w′ := w′
0||w

′
1||w

′
2||w

′
3,0||w′

3,1, where, w′
i are as above (line 1)

8 :
(
Jβ′

0K, Jβ′
1K, Jβ′

2K
)
:= P.EmbedWitness

(
w′

0||w
′
1||w

′
2, (JukK)k∈[9]

)
9 : β′

3,0(X) := w′
3,0X + v9

10 : β′
3,1(X) := w′

3,1X + v9

11 : Jβ′
3K :=

(
Jβ′

3,0K, Jβ′
3,1K

)
12 : Jβ′K :=

(
Jβ′

0K, Jβ′
1K, Jβ′

2K, Jβ′
3K
)

13 : return Jβ′K

14 : else :

15 : return ⊥

16 : endif
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Algorithm 4.15: P.TensorProduct
(
Jβ′iK

(di), Jβ′jK
(dj), num

)
Public information and inputs

Public information: Sizes ni and nj of two blocks of VOLE correlations Jβ′
iK

(di) and Jβ′
jK(dj)

respectively. Each element of Jβ′
iK

(di) (resp. Jβ′
jK(dj)) is represented as degree di (resp. dj)

polynomial with coefficients in F2ρ .

Prover’s input: (ni + nj) secret polynomials

Jβ′
i,0K(di), . . . , Jβ′

i,(ni−1)K
(di), Jβ′

j,0K(dj), . . . , Jβ′
j,(nj−1)K

(dj).

Output

Prover’s output: num∗ polynomials, JζK(di+dj) := (Jζ0K(di+dj), . . . , Jζnum∗−1K(di+dj)) each

of degree di + dj which can be seen as VOLE correlations, where num∗ := min(ninj , num).

Computing tensor product

1 : counter := 0

2 : for indexj ∈ [nj ]:

3 : for indexi ∈ [ni]:

4 : if counter ∈ [num]:

5 : JζcounterK(di+dj) := P.Multiply
(

Jβ′
j,indexj

K(dj), Jβ′
i,indexi

K(di)
)

6 : counter := counter + 1

7 : else :

8 : break

9 : endfor

10 : endfor

11 : JζK(di+dj) := (Jζ0K(di+dj), . . . , Jζcounter−1K(di+dj))

12 : return JζK(di+dj)
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Algorithm 4.16: P.TensorProductToElementaryVector(Jβ′K, n)

Public information and inputs

Public information: Length of the secret elementary vector n, degree d := ⌈log4(n)⌉.

Prover’s input: (2ℓrow − 6) secret degree-1 (linear) polynomials represented as Jβ′K.

Output

Prover’s output: n polynomials, JzK(d) := (Jz0K(d), . . . , Jzn−1K(d)) each of degree d which

can be seen as VOLE correlations corresponding to the secret elementary vector.

Compute elementary vector using tensor product

1 : if len(Jβ′K) = 12: // Security level 1

// Parse Jβ′K as Jβ′K :=
(
Jβ′

0K, Jβ′
1K, Jβ′

2K
)
.

// Generating 16 degree-2 VOLE correlations in F2 × F2ρ .

2 : Jζ0,1K(2) := P.TensorProduct
(
Jβ′

0K, Jβ′
1K, n

)
// Generating 64 degree-3 VOLE correlations in F2 × F2ρ .

3 : JzK(3) := P.TensorProduct
(

Jζ0,1K(2), Jβ′
2K, n

)
4 : return JzK(3)

5 : elseif len(Jβ′K) = 14: // Security levels 3 and 5

// Parse Jβ′K as Jβ′K :=
(
Jβ′

0K, Jβ′
1K, Jβ′

2K, Jβ′
3K
)
.

// Generating 16 degree-2 VOLE correlations in F2 × F2ρ .

6 : Jζ0,1K(2) := P.TensorProduct
(
Jβ′

0K, Jβ′
1K, n

)
// Generating 64 degree-3 VOLE correlations in F2 × F2ρ .

7 : Jζ0,1,2K(3) := P.TensorProduct
(

Jζ0,1K(2), Jβ′
2K, n

)
8 : // Generating n degree-4 VOLE correlations in F2 × F2ρ .

9 : JzK(4) := P.TensorProduct
(

Jζ0,1,2K(3), Jβ′
3K, n

)
10 : return JzK(4)

11 : else :

12 : return ⊥

13 : endif
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Algorithm 4.17: P.VOLE-ElementaryVector
(
pos, (JukK)k∈[ℓrow]

)
Public information and inputs

Public information: Length of the secret elementary vector n, degree d := ⌈log4 n⌉, size of

the compressed secret witness ℓrow := d+ 6.

Prover’s input: Secret position pos ∈ [n], ℓrow VOLE correlations JukK for random (uk, vk) ∈

F2 × F2ρ represented as polynomials fuk
(X) = ukX + vk for k ∈ [ℓrow].

Output

Prover’s output: Masked compressed secret t ∈ Fℓrow
2 , n polynomials JzK(d) :=

(Jz0K(d), . . . , Jzn−1K(d)) each of degree d which can be seen as VOLE correlations cor-

responding to the secret elementary vector, along with (2ℓrow − 6) secret degree-1 (linear)

polynomials represented as Jβ′K.

Compute masked secret

1 : w′ := PosToWitness(pos)

2 : w := CompWit(w′)

3 : t := w ⊕ u

Construct VOLE correlations with witness

4 : Jβ′K := P.EmbedWitness
(
w′, (JukK)k∈[ℓrow]

)
Compute elementary vector using tensor product

5 : JzK(d) := P.TensorProductToElementaryVector
(
Jβ′K, n

)
6 : // Note that JzK(d) := (Jz0K(d), . . . , Jzn−1K(d)).

7 : return
(
t, Jβ′K, JzK(d)

)
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Algorithm 4.18: P.VOLE-Permutation
(
P , (Jui,kK)i∈[n],k∈[ℓrow]

)
Public information and inputs

Public information: Matrix dimension n of the secret permutation matrix, degree d :=

⌈log4 n⌉, size of the compressed secret witness ℓrow := d+ 6.

Prover’s input: Secret permutation matrix P represented as n positions (pos0, . . . , posn−1),

n · ℓrow VOLE correlations Jui,kK for random (ui,k, vi,k) ∈ F2 × F2ρ represented as polyno-

mials fui,k
(X) = ui,kX + vi,k for (i, k) ∈ [n]× [ℓrow].

Output

Prover’s output: Masked compressed secret t ∈ Fℓ
2, where ℓ := n · ℓrow. Also, n2 polynomials

JzK(d) := (Jz0,0K(d), . . . , Jz(n−1),(n−1)K(d)) each of degree d which can be seen as VOLE

correlations corresponding to the individual entries of the secret permutation matrix P .

Along with n(2ℓrow − 6) secret degree-1 (linear) polynomials represented as JβK, and n

polynomials JColCheckK(d)) := (JColCheck0K(d), . . . , JColCheckn−1K(d)) each of degree d which

can be seen as VOLE correlations corresponding to the sums of the individual columns of

the secret permutation matrix P .

Compute P row-wise as n elementary vectors

1 : for i ∈ [n] :

2 : (ti, JβiK, JziK(d)) := P.VOLE-ElementaryVector
(
posi, (Jui,kK)k∈[ℓrow]

)
3 : endfor

Compute P columns check

4 : for j ∈ [n] :

5 : JColSumjK(d) :=
∑n−1

i=0 Jzi,jK(d)

6 : JColCheckjK(d) := JColSumjK(d) −Xd

7 : endfor

8 : t := (t0, · · · , tn−1)

9 : JβK := (Jβ0K, · · · , Jβn−1K)

10 : JzK(d) := (Jz0K(d), . . . , Jzn−1K(d))

11 : JColCheckK(d) := (JColCheck0K(d), . . . , JColCheckn−1K(d))

12 : return (t, JβK, JzK(d), JColCheckK(d))
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Algorithm 4.19: P.Check-ElementaryBlock(Jβ′iK)

Public information and inputs

Public information: Size n′ ∈ {2, 4}of a secret block of VOLE correlations Jβ′
iK.

Prover’s input: A block of secret VOLE correlations Jβ′
iK, where each element of Jβ′

iK is

represented as degree-1 (linear) polynomial with coefficients in F2ρ .

Output

Prover’s output: n′
2 quadratic polynomials, Je′

iK
(2) :=

(
Je′i,0,1K(2), Je′i,2,3K(2)

)
(or Je′i,0,1K(2))

which can be seen as VOLE correlations.

1 : if len(Jβ′
iK) = 4:

// Parse Jβ′
iK as Jβ′

iK :=
(

Jβ′
i,0K, Jβ′

i,1K, Jβ′
i,2K, Jβ′

i,3K
)
.

2 : Je′i,0,1K(2) := P.Multiply
(

Jβ′
i,0K, Jβ′

i,1K
)

3 : Je′i,2,3K(2) := P.Multiply
(

Jβ′
i,2K, Jβ′

i,3K
)

4 : Je′
iK

(2) :=
(

Je′i,0,1K(2), Je′i,2,3K(2)
)

5 : return Je′
iK

(2)

6 : elseif len(Jβ′
iK) = 2:

// Parse Jβ′
iK as Jβ′

iK :=
(

Jβ′
i,0K, Jβ′

i,1K
)
.

7 : Je′i,0,1K(2) := P.Multiply
(

Jβ′
i,0K, Jβ′

i,1K
)

8 : return Je′i,0,1K(2)

9 : else :

10 : return ⊥

11 : endif
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Algorithm 4.20: P.Check-ElementaryVector(Jβ′K)

Public information and inputs

Public information: Length of the secret elementary vector n, degree d := ⌈log4(n)⌉, ℓrow :=

d+ 6.

Prover’s input: (2ℓrow − 6) secret degree-1 (linear) polynomials represented as Jβ′K.

Output

Prover’s output: (d + 3) degree-d polynomials, Je′K(d) which can be seen as VOLE correla-

tions.

1 : if len(Jβ′K) = 12: // Security level 1

// Parse Jβ′K as Jβ′K :=
(
Jβ′

0K, Jβ′
1K, Jβ′

2K
)
.

2 : for i ∈ [3]:

3 : Je′
iK

(2) := P.Check-ElementaryBlock
(
Jβ′

iK
)

4 : Je′
iK

(3) := X · Je′
iK

(2)

5 : endfor

6 : Je′K(3) :=
(

Je′
0K(3), Je′

1K(3), Je′
2K(3)

)
7 : return Je′K(3)

8 : elseif len(Jβ′K) = 14: // Security levels 3 and 5

// Parse Jβ′K as Jβ′K :=
(
Jβ′

0K, Jβ′
1K, Jβ′

2K, Jβ′
3K
)
.

9 :
(

Je′
0K(3), Je′

1K(3), Je′
2K(3)

)
:= P.Check-ElementaryVector

(
Jβ′

0K, Jβ′
1K, Jβ′

2K
)

10 : for i ∈ [3]:

11 : Je′
iK

(4) := X · Je′
iK

(3)

12 : endfor

13 : Je′3,0,1K(2) := P.Check-ElementaryBlock
(
Jβ′

3K
)

14 : Je′3,0,1K(4) := X2 · Je′3,0,1K(2)

15 : Je′K(4) :=
(

Je′
0K(4), Je′

1K(4), Je′
2K(4), Je′3,0,1K(4)

)
16 : return Je′K(4)

17 : else :

18 : return ⊥

19 : endif
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Algorithm 4.21: P.CheckZero
(
JwK(d), (Jui,kK)(i,k)∈[d−1]×[ρ]

)
Public information and inputs

Public information: Degree of input VOLE correlation JwK(d) (seen as polynomial) d.

Prover’s input: Degree-d VOLE correlation JwK(d), (d − 1)ρ random VOLE correlation rep-

resented as fui,k
(X) = ui,kX + vi,k where (ui,k, vi,k) ∈ F2 × F2ρ for (i, k) ∈ [d− 1]× [ρ].

Output

Prover’s output: Polynomial JaK. Note that for an honest prover, the leading coefficient

(coefficient ofXd term will be equal to 0) and therefore JaK will consists of only d coefficients

for terms Xi for i ∈ [d].

// Generating VOLE correlations in F2ρ × F2ρ

1 : for i ∈ [d− 1]:

2 : u′
i :=

∑ρ−1
k=0 ui,kγ

k
ρ //

{
γk
ρ

}ρ−1

k=0
is the power basis of F2ρ with coefficients in F2.

3 : v′i :=
∑ρ−1

k=0 vi,kγ
k
ρ

4 : fu′
i
(X) := u′

iX + v′i // (u′
i, v

′
i) in F2ρ × F2ρ .

5 : endfor

6 : fmask(X) :=
∑d−2

i=0 fu′
i
(X) ·Xi

7 : JaK := fw(X) + fmask(X)

8 : return JaK
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Algorithm 4.22:
P.Check-PKP

(
P , pk, (Jui,kK)(i,k)∈[n]×[ℓrow], (Jui′,k′K)(i′,k′)∈[d−1]×[ρ], seed

)
Public information

Public information: Matrix dimension n of the secret permutation matrix, degree d :=

⌈log4 n⌉, size of the compressed secret witness ℓrow := d+ 6.

Prover’s input: Secret permutation matrix P represented as n positions (pos0, . . . , posn−1),

public key pk = (H,x), n · ℓrow VOLE correlations Jui,kK for random (ui,k, vi,k) ∈ F2×F2ρ

represented as polynomials fui,k
(X) = ui,kX + vi,k for (i, k) ∈ [n] × [ℓrow], (d − 1)ρ

VOLE correlations Jui′,k′K for random ui′,k′ , vi′,k′ ∈ F2×F2ρ represented as fu
i′,k′ (X) =

ui′,k′X + vi′,k′ for (i′, k′) ∈ [d− 1]× [ρ], seed ∈ {0, 1}2λ.

Output

Prover’s output: Degree-d polynomial JaK as a proof to show that P is a solution to the PKP

instance defined by pk.

Compute P in matrix form

1 : (t, JβK, JzK(d), JColCheckK(d)) := P.VOLE-Permutation
(
P , (Jui,kK)(i,k)∈[n]×[ℓrow]

)
// Parse JColCheckK(d) as (f0(X), f1(X), . . . , fn−1(X))

Check elementary vectors

2 : for i ∈ [n]

3 : JElemVecCheckiK(d) := P.Check-ElementaryVector (JβiK)

// Each JElemVecCheckiK(d) contains 6 degree-d polynomials if λ = 128,

// and 7 degree-d polynomials if λ ∈ {192, 256}.

4 : endfor

5 : JElemVecCheckK(d) :=
(

JElemVecCheck0K(d), . . . , JElemVecCheckn−1K(d)
)

// Parse JElemVecCheckK(d) as (fn(X), fn+1(X), . . . , fcn+n−1(X)),

// where, c = 6 if λ = 128, and c = 7 if λ ∈ {192, 256}.

Compute x′ = Px

6 : for i ∈ [n]

7 : Jx′
iK

(d) :=
∑n−1

j=0 Jzi,jK(d) · xj

8 : endfor

Compute y = Hx′

9 : for i ∈ [m]

10 : JyiK(d) = fi+cn+n(X) :=
∑n−1

j=0 hi,j · Jx′
jK(d)

11 : endfor

Merge polynomials and run CheckZero

12 : α := H4(seed :: ρ · (cn+ n+m)) // α should be parsed as ∈ Fcn+n+m
2ρ

13 : f(X) :=
∑cn+n+m−1

j=0 αj · fj(X)

14 : JaK := P.CheckZero
(
f(X), (Jui′,k′K)(i′,k′)∈[d−1]×[ρ]

)
15 : proof := JaK

16 : return proof
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Verifier. In this section we present all the algorithms that will be used by
the verifier to verify that the prover has knowledge of the secret permutation
which serves as a solution to the PKP instance corresponding to the public key.
As expected in VOLE-in-the-Head (or MPC-in-the-Head) type PoK, the veri-
fier’s algorithm bear a close resemblance to those used by the prover. In the
case of PERK, the main difference is that while prover’s algorithms explained
in Section 4.5 take polynomials as inputs and manipulate them, the verifier’s
algorithms described in this section perform analogous manipulations on evalua-
tions of corresponding polynomials. The verifier possesses the VOLE correlation
inputs q and ∆, and it also receives the masked (compressed) witness t and
masked polynomial JaK from the prover.

The first step the verifier performs is to update the VOLE correlation inputs
q with the help of the masked witness t, to ensure that they satisfy the VOLE
correlation with respect to witness w (instead of u). This is achieved by Al-
gorithm 4.23 EmbedMaskedWitnessBlock. The output of this algorithm are the
VOLE correlations q′β′

i
corresponding to the elementary blocks of witness. Simi-

lar to the prover’s case, the Algorithm 4.24 EmbedMaskedWitness aggregates the
VOLE correlations corresponding to the individual elementary vectors of lengths
4 and 2, and outputs VOLE correlations q′β′ corresponding to the aggregation of
3 elementary vectors of lengths 4 (and in case of L3 and L5 parameters, another
elementary vector of length 2). Once the verifier possesses the VOLE correlation
inputs (q′β′) corresponding to the elementary vector entries, it then computes
VOLE correlations qz corresponding to each individual row of the secret per-
mutation matrix with help of Algorithm 4.26 TensorProductToElementaryVector,
which internally calls Algorithm 4.25 TensorProduct to compute the tensor prod-
uct between two blocks. The Algorithm 4.27 VOLE-ElementaryVector produces
the VOLE correlations q′β′ along with qz.

After obtaining the VOLE correlations for each of the n rows by running
Algorithm 4.27 VOLE-ElementaryVector n times, the verifier proceeds to com-
pute the extra n VOLE correlation values, qColCheck which ensure that each col-
umn of secret matrix adds upto exactly 1. This is described in Algorithm 4.28
VOLE-Permutation. The verifier checks the elementary structure by computing
the values q′e′ using Algorithm 4.29 Check-ElementaryBlock, and Algorithm 4.30
Check-ElementaryVector.

In order to check that the leading coefficient of the masked polynomial JaK is
zero, the verifier first checks the degree of the polynomial is equal to d−1, it then
evaluates the masking polynomial using its inputs q, ∆ and then finally checks
if the evaluation of the polynomial JaK sent by the prover at point ∆ matches
the addition of the q value obtained from the computations checking constraints
related to the PKP problem and the evaluation of masking polynomial. The
Algorithm 4.31 CheckZero achieves this and outputs 1 when all the values match
and outputs 0 otherwise indicating the failure to verify the prover’s claim.
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Finally, as in the prover’s case, the Algorithm 4.32 Check-PKP puts all of
the checks for checking the elementary structure of rows (blocks), column sums
equaling to 1, and satisfiability of PKP equation together by evaluating degree-
d polynomials at ∆. These evaluations are then merged together into a single
value by computing (verifier dictated) random linear combination, which is then
checked with the help of Algorithm 4.31 CheckZero.

Algorithm 4.23: V.EmbedMaskedWitnessBlock
(
∆, t′i, (qk)k∈[3]

)
Public information and inputs

Public information: Length of the masked witness block = 4.

Verifier’s input: VOLE correlation challenge ∆ ∈ F2ρ , ith block t′i := t′i,0||t
′
i,1||t

′
i,2||t

′
i,3 ∈ F4

2

of the masked witness t′, 3 VOLE correlation inputs (q0, q1, q2) with each of them in F2ρ .

Output

Verifier’s output: VOLE correlation values q′
β′
i
:=

(
q′
β′
i,0
, q′

β′
i,1
, q′

β′
i,2
, q′

β′
i,3

)
∈ F4

2ρ

Construct VOLE correlations with witness

1 : // Parse t′i as t′i := t′i,0||t
′
i,1||t

′
i,2||t

′
i,3.

2 : for j ∈ [3]:

3 : q′
β′
i,j

:= t′i,j ·∆+ qj

4 : endfor

5 : q′
β′
i,3

:= t′i,3 ·∆+ q0 + q1 + q2

6 : q′
β′
i
:=

(
q′
β′
i,0
, q′

β′
i,1
, q′

β′
i,2
, q′

β′
i,3

)
7 : return q′

β′
i
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Algorithm 4.24: V.EmbedMaskedWitness(∆, t′, q)

Public information and inputs

Public information: Length of the compressed masked witness ℓrow, and length of the masked

witness |t′| := 2 · ℓrow − 6.

Verifier’s input: VOLE correlation challenge ∆ ∈ F2ρ , the masked witness t′, ℓrow VOLE

correlation inputs q := (q0, . . . , qℓrow−1) with each of them in F2ρ .

Output

Verifier’s output: q′
β′ with elements in F2ρ .

Construct VOLE correlations with witness

1 : if len(t′) = 12: // Security level 1

// Parse t′ as t′ := t′0||t
′
1||t

′
2, where, t′i := t′i,0||t

′
i,1||t

′
i,2||t

′
i,3.

2 : for i ∈ [3]:

3 : q′
β′
i
:= V.EmbedMaskedWitnessBlock

(
∆, t′i, q[3i : 3i+ 2]

)
4 : endfor

5 : q′
β′ :=

(
q′
β′
0
, q′

β′
1
, q′

β′
2

)
6 : return q′

β′

7 : elseif len(t′) = 14: // Security levels 3 and 5

// Parse t′ as t′ := t′0||t
′
1||t

′
2||t

′
3,0||t′3,1, where, t′i are as above (line 1)

8 :

(
q′
β′
0
, q′

β′
1
, q′

β′
2

)
:= V.EmbedMaskedWitness

(
∆, t′0||t

′
1||t

′
2, q[0 : 8]

)
9 : q′

β′
3,0

:= t′3,0 ·∆+ q9

10 : q′
β′
3,1

:= t′3,1 ·∆+ q9

11 : q′
β′
3
:=

(
q′
β′
3,0
, q′

β′
3,1

)
12 : q′

β′ :=

(
q′
β′
0
, q′

β′
1
, q′

β′
2
, q′

β′
3

)
13 : return q′

β′

14 : else :

15 : return ⊥

16 : endif
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Algorithm 4.25: V.TensorProduct
(
q′β′

i
, q′β′

j
, num

)
Public information and inputs

Public information: Sizes ni and nj of the two blocks of verifier’s VOLE correlation inputs

q′
β′
i

and q′
β′
j

respectively. Each element of q′
β′
i

(resp. q′
β′
j
) is in F2ρ .

Verifier’s input: (ni + nj) values q′
β′
i

:=

(
q′
β′
i,0
, . . . , q′

β′
i,(ni−1)

)
and q′

β′
j

:=(
q′
β′
j,0
, . . . , q′

β′
j,(nj−1)

)
.

Output

Verifier’s output: qζ :=
(
qζ0 , . . . , qζnum∗−1

)
is a block of num∗ values in F2ρ , where num∗ :=

min(ninj , num).

Computing tensor product

1 : counter := 0

2 : for indexj ∈ [nj ]:

3 : for indexi ∈ [ni]:

4 : if counter ∈ [num]:

5 : qζcounter := q′
β′
j,indexj

· q′
β′
i,indexi

6 : counter := counter + 1

7 : else :

8 : break

9 : endfor

10 : endfor

11 : qζ :=
(
qζ0 , . . . , qζnum∗−1

)
12 : return qζ
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Algorithm 4.26: V.TensorProductToElementaryVector
(
q′β′ , num

)
Public information and inputs

Public information: Length of the input vector num ∈ [128]. Lengths of the blocks |q′
β′
i
| := 4

for i ∈ [3], and |q′
β′
3
| := 2

Verifier’s input: VOLE correlation input q′
β′ with elements in F2ρ .

Output

Verifier’s output: qz a block of values in F2ρ .

Compute elementary vector using tensor product

1 : if len(q′
β′ ) = 12: // Security level 1

// Parse q′
β′ as q′

β′ :=

(
q′
β′
0
, q′

β′
1
, q′

β′
2

)
.

2 : qζ0,1
:= V.TensorProduct

(
q′
β′
0
, q′

β′
1
, num

)
3 : qz := V.TensorProduct

(
qζ0,1

, q′
β′
2
, num

)
4 : return qz

5 : elseif len(q′
β′ ) = 14: // Security levels 3 and 5

// Parse q′
β′ as q′

β′ :=

(
q′
β′
0
, q′

β′
1
, q′

β′
2
, q′

β′
3

)
.

6 : qζ0,1
:= V.TensorProduct

(
q′
β′
0
, q′

β′
1
, num

)
7 : qζ0,1,2

:= V.TensorProduct

(
qζ0,1

, q′
β′
2
, num

)
8 : qz := V.TensorProduct

(
qζ0,1,2

, q′
β′
3
, num

)
9 : return qz

10 : else :

11 : return ⊥

12 : endif
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Algorithm 4.27: V.VOLE-ElementaryVector(∆, t, q)

Public information and inputs

Public information: Length of the elementary vector n, length of the compressed masked

witness |t| := ℓrow.

Verifier’s input: VOLE correlation challenge ∆ ∈ F2ρ , the compressed masked witness t, ℓrow
VOLE correlation inputs q := (q0, . . . , qℓrow−1) with each of them in F2ρ .

Output

Verifier’s output: Tuple of (2 · ℓrow − 6) VOLE correlation values corresponding to the

shares β′ held by the prover, along with another tuple of n VOLE correlation values

qz :=
(
qz0 , qz1 , . . . qzn−1

)
corresponding to the secret elementary vector of length n held

by the prover. All VOLE correlation values output are in F2ρ .

Compute masked secret

1 : t′ := ExpWit(t)

2 : q′
β′ := V.EmbedMaskedWitness

(
∆, t′, q

)
Compute elementary vector using tensor product

3 : qz := V.TensorProductToElementaryVector
(
q′
β′ , n

)
4 : return

(
q′
β′ , qz

)
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Algorithm 4.28: V.VOLE-Permutation(∆, t, q)

Public information and inputs

Public information: Matrix dimension n of the secret permutation matrix, length of the

compressed masked witness |t| := ℓ. Note that ℓ = nℓrow.

Verifier’s input: VOLE correlation challenge ∆ ∈ F2ρ , the compressed masked witness t :=

(t0, t1, . . . , tn−1), where each ti ∈ Fℓrow
2 , ℓ VOLE correlation inputs q := (q0, . . . , qn−1)

with each qi consists of ℓrow values in F2ρ .

Output

Verifier’s output: Tuple of VOLE correlation values corresponding to the shares β held by

the prover, tuple of n VOLE correlation values qz :=
(
qz0 , qz1 , . . . qzn−1

)
corresponding

to the secret elementary vector of length n held by the prover, along with tuple of n VOLE

correlation values qColCheck :=
(
qColCheck0

, qColCheck1
, . . . , qColCheckn−1

)
corresponding to (sum

of column entries - 1) for each column of the secret permutation matrix held by the prover.

All VOLE correlation values output are in F2ρ .

Compute P row-wise as n elementary vectors

1 : for i ∈ [n] :

2 :
(
qβi

, qzi

)
:= V.VOLE-ElementaryVector(∆, ti, qi)

3 : endfor

Compute P columns check

4 : for j ∈ [n] :

5 : qColSumj
=
∑n−1

i=0 qzi,j

6 : qColCheckj = qColSumj
−∆d

7 : endfor

8 : qβ :=
(
qβ0

, qβ1
, . . . , qβn−1

)
9 : qz :=

(
qz0

, qz1
, . . . , qzn−1

)
10 : qColCheck :=

(
qColCheck0

, qColCheck1
, . . . , qColCheckn−1

)
11 : return (qβ, qz, qColCheck)
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Algorithm 4.29: V.Check-ElementaryBlock
(
q′β′

i

)
Public information and inputs

Public information: Length of the elementary vector block to be checked ∈ {2, 4}.

Verifier’s input: A tuple of VOLE correlation inputs q′
β′
i

with same size as the elementary

vector block to be checked, with each element of q′
β′
i

in F2ρ .

Output

Verifier’s output: VOLE correlation values q′
e′
i

(which can be a single element or a tuple) to

help verify the elementary vector structure the secret vector held by the prover.

1 : if len(q′
β′
i
) = 4:

// Parse q′
β′
i

as q′
β′
i
:=

(
q′
β′
i,0
, q′

β′
i,1
, q′

β′
i,2
, q′

β′
i,3

)
.

2 : q′
e′
i,0,1

:= q′
β′
i,0
· q′

β′
i,1

3 : q′
e′
i,0,2

:= q′
β′
i,2
, q′

β′
i,3

4 : q′
e′
i
:=

(
q′
e′
i,0,1

, q′
e′
i,0,2

)
5 : return q′

e′
i

6 : elseif len(q′
β′
i
) = 2:

// Parse q′
β′
i

as q′
β′
i
:=

(
q′
β′
i,0
, q′

β′
i,1

)
.

7 : q′
e′
i,0,1

:= q′
β′
i,0
· q′

β′
i,1

8 : return q′
e′
i,0,1

9 : else :

10 : return ⊥

11 : endif
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Algorithm 4.30: V.Check-ElementaryVector
(
∆, q′β′

)
Public information and inputs

Public information: Length of the tuple of VOLE correlation inputs corresponding to the

masked witness |q′
β′ | := 2 · ℓrow − 6. Lengths of the blocks |q′

β′
i
| := 4 for i ∈ [3], and

|q′
β′
3
| := 2

Verifier’s input: VOLE correlation challenge ∆ ∈ F2ρ , a tuple of VOLE correlation inputs

q′
β′ with each of element in F2ρ .

Output

Verifier’s output: A tuple of VOLE correlation values q′
e′ to help verify the elementary vector

structure the secret vector held by the prover.

1 : if len(q′
β′ ) = 12: // Security level 1

// Parse q′
β′ as q′

β′ :=

(
q′
β′
0
, q′

β′
1
, q′

β′
2

)
.

2 : for i ∈ [3]:

3 : q′
e′
i
:= V.Check-ElementaryBlock

(
q′
β′
i

)
4 : q′

e′
i
:= ∆ · q′

e′
i

// Here each element of the tuple q′
e′
i

should be multiplied by ∆.

5 : endfor

6 : q′
e′ :=

(
q′
e′0
, q′

e′1
, q′

e′2

)
7 : return q′

e′

8 : elseif len(q′
β′ ) = 14: // Security levels 3 and 5

// Parse q′
β′ as q′

β′ :=

(
q′
β′
0
, q′

β′
1
, q′

β′
2
, q′

β′
3

)
.

9 :

(
q′
e′0
, q′

e′1
, q′

e′2

)
:= V.Check-ElementaryVector

(
q′
β′
0
, q′

β′
1
, q′

β′
2

)
10 : for i ∈ [3]:

11 : q′
e′
i
:= ∆ · q′

e′
i

// Here each element of the tuple q′
e′
i

should be multiplied by ∆.

12 : endfor

13 : q′
e′3,0,1

:= V.Check-ElementaryBlock
(
q′
β′
3

)
14 : q′

e′3,0,1
:= ∆2 · q′

e′3,0,1

15 : q′
e′ :=

(
q′
e′0
, q′

e′1
, q′

e′2
, q′

e′3,0,1

)
16 : return q′

e′

17 : else :

18 : return ⊥

19 : endif
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Algorithm 4.31: V.CheckZero
(
∆, qf , (qui,k

)(i,k)∈[d−1]×[ρ], JaK
)

Public information and inputs

Public information: Degree of input polynomial JaK := d− 1.

Verifier’s input: Polynomial JaK, qf , qui,k
= fui,k

(∆) for (i, k) ∈ [d− 1]× [ρ], ∆ ∈ F2ρ .

Output

Verifier’s output: Boolean indicating if leading coefficient (coefficient of Xd) of some degree-d

polynomial f(X) (for which verifier already holds qf ∈ F2ρ ) is equal to zero or not.

1 : if degree of JaK ̸= d− 1:

2 : return ⊥

3 : else :

// Generating q′ui
∈ F2ρ for i ∈ [d− 1]

4 : for i ∈ [d− 1]:

5 : q′ui
:=
∑ρ−1

k=0 qui,k
·∆k

6 : endfor

7 : // Parse JaK as JaK := ad−1X
d−1 + · · ·+ a1X + a0

8 : Compute q̃ :=
∑d−1

i=0 ai ·∆
i

9 : q = qf +
∑d−2

i=0 q
′
ui
·∆i

10 : b :=
(
q

?
= q̃
)

11 : return b
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Algorithm 4.32: V.Check-PKP(seed, pk, t, ∆, q, qcz, JaK)

Public information

Public information: Matrix dimension n of the secret permutation matrix, d = ⌈log4 n⌉.

Verifier’s input: VOLE correlation challenge ∆ ∈ F2ρ , the compressed masked witness t :=

(t0, t1, . . . , tn−1), where each ti ∈ Fℓrow
2 , ℓ VOLE correlation inputs q := (q0, . . . , qn−1)

with each qi consists of ℓrow values in F2ρ , (d−1) VOLE correlations qcz in F2ρ , polynomial

JaK, and seed ∈ {0, 1}2λ.

Output

Verifier’s output: Boolean value b indicating if the proof is accepted or not.

Compute VOLE correlations corresponding to shares of P in matrix form

1 : (qβ, qz, qColCheck) := V.VOLE-Permutation (∆, t, q)

// Parse qColCheck as
(
qf0 , qf1 , . . . , qfn−1

)
Check elementary vectors

2 : for i ∈ [0, n− 1]

3 : qElemVecChecki
:= V.Check-ElementaryVector

(
∆, qβi

)
// Each qElemVecChecki

contains 6 elements if λ = 128,

// and 7 elements if λ ∈ {192, 256}.

4 : endfor

5 : qElemVecCheck :=
(
qElemVecCheck0

, . . . , qElemVecCheckn−1

)
// Parse qElemVecCheck as

(
qfn , qfn+1

, . . . , qfcn+n−1

)
,

// where, c = 6 if λ = 128, and c = 7 if λ ∈ {192, 256}.

Compute x′ = Px

6 : for i ∈ [0, n− 1]

7 : qx′
i
=
∑n−1

j=0 qzi,j · xj

8 : endfor

Compute y = Hx′

9 : for i ∈ [0,m− 1]

10 : qyi
= qfi+cn+n

=
∑n−1

j=0 hi,j · qx′
j

11 : endfor

Merge polynomials and run CheckZero

12 : α := H4(seed :: ρ · (cn+ n+m)) // α should be parsed as ∈ Fcn+n+m
2ρ

13 : qf =
∑cn+n+m−1

j=0 αj · qfj
14 : b := V.CheckZero(∆, qf , qcz, JaK)

15 : return b
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4.6 PERK

In this section, we describes the PERK.KeyGen, PERK.Sign and PERK.Verify al-
gorithms. The PERK key generation algorithm PERK.KeyGen takes the public
parameters for the PKP paramPKP := (q,m, n) as input along with the security
parameter λ. The key generation algorithm outputs a public key represented by
a seed of length λ which generates the matrix H (in deterministic manner), and
a vector x ∈ Fnq ; along with the secret key also represented by a separate seed
of length λ which generates the secret permutation in a deterministic way.

The key generation algorithm, first samples 3 distinct seeds Hseed, permseed,
and kerseed of length λ independently and at uniform random. It expands the
seed Hseed to compute a pseudorandom matrix M ∈ Fm×(n−m)

q and sets the
public matrix in its canonical form as H := [Im M ]. Then it computes the
basis of kernel of H and samples a random vector x′ by taking a random linear
combination of the basis vectors, this random linear combination is derived using
kerseed. The key generation algorithm also samples a permutation π using permseed

and sets x := π−1(x′). The algorithms outputs pk := (Hseed,x), and sk :=
permseed.

Algorithm 4.33: PERK.KeyGen()

Public information and inputs

Public information: Public parameters paramPKP := (q,m, n), and security parameter λ.

Output

The public key as a seed that generates the public matrix concatenated with the public

vector, and the private key as the seed that generates the secret permutation.

Sampling randomness

1 : Hseed
$←− {0, 1}λ

2 : kerseed
$←− {0, 1}λ

3 : permseed
$←− {0, 1}λ

Construct PKP instance

4 : M ← ExpandMatrixM(Hseed) in Fm×(n−m)
q

5 : H = [Im M ] in Fm×n
q

6 : x′ ← ExpandKernelVector(kerseed,H) in ker(H)

7 : π ← ExpandPermutation(permseed) in Sn
8 : x = π−1(x′)

9 : return (pk = (Hseed,x), sk = (permseed)).
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Algorithm 4.34: PERK.Sign(msg, sk, pk)

Public information and inputs

Public information: Security parameter λ, public parameters paramPKP := (q,m, n),

paramVOLE := (τ, µ, ρ), paramTreePRG := (τ, κ,N, Topen, w) where, N := τ2κ is the number

of leaves of the VOLE commitment. Public key (expanded) pk := (H,x).

Prover’s input: Secret key sk represented as an array of positions of non-zero entries of the

secret permutation matrix (row-wise), message msg to be signed.

Output

Signature σ for message msg generated using prover’s secret key sk.

Initialization

1 : µ̃ := H1 (pk||msg :: 2λ)

2 : rand
$←− {0, 1}2λ

3 : (mseed, salt) := H3 (sk||µ̃||rand :: 3λ) ∈ {0, 1}λ × {0, 1}2λ

VOLE construction, commitments and consistency checks

4 : (hcom, decom, c1, . . . , cτ−1,u,V ) := VOLECommit(mseed, salt :: ℓ̂)

5 : ch1 := H1
2 (µ̃||hcom||c1|| · · · ||cτ−1||salt :: 5λ+ 64)

6 : ũ := VOLEHash(ch1,u :: ℓVOLEHashMask) ∈ {0, 1}ℓVOLEHashMask

7 : Ṽ := VOLEHash(ch1,V :: ℓVOLEHashMask) ∈ {0, 1}ℓVOLEHashMask×ρ // hash column-wise

8 : hV := H1

(
Ṽ :: 2λ

)
// hash in column major order

Committing to witness and PKP proof

9 : (t, JβK, JzK(d), JColCheckK(d)) := P.VOLE-Permutation
(
sk, (Jui,kK)i∈[n],k∈[ℓ]

)
10 : ch2 := H2

2 (ch1||ũ||hV ||t :: 2λ)

11 : JaK := P.Check-PKP
(
sk, pk, Jui,kKi∈[n],k∈[ℓ], (Jui′,k′K)(i′,k′)∈[d−1]×[ρ], ch2

)
VOLE decommitments and opening VC

12 : ctr := 0

13 : while True:

14 : ch3 := H3
2 (ch2||JaK||ctr :: τ0κ0 + τ1κ1 + w) // τ0κ0 + τ1κ1 + w bits

15 : if ch3[τ0κ0 + τ1κ1 : τ0κ0 + τ1κ1 + w − 1] = 0w:

16 : i∗ := ChallDec (ch3[0 : τ0κ0 + τ1κ1 − 1])

17 :
(
pdecom, (come,i∗[e])e∈[τ]

)
:= VC.Open (decom, i∗)

18 : if the above output is not ⊥ break

19 : ctr = ctr + 1

20 : return σ :=
(
c1, . . . , cτ−1, ũ, t, JaK, pdecom, (come,i∗[e])e∈[τ], ch3, ctr, salt

)
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Algorithm 4.35: PERK.Verify(pk,msg, σ)

Public information and inputs

Public information: Security parameter λ, public parameters paramPKP := (q,m, n),

paramVOLE := (τ, µ, ρ), paramTreePRG := (τ, κ,N, Topen, w) where, N := τ2κ is the number

of leaves of the VOLE commitment. Public key (expanded) pk := (H,x).

Verifier’s input: Public key (expanded) pk := (H,x), message msg, and a signature σ.

Output

Bit b indicating if the signature σ verifies as a valid signature for message msg with pk as

the public key. If b = 1 the signature is accepted as valid, if b = 0 it is rejected.

Initialization

1 : Parse σ :=
(
c1, . . . , cτ−1, ũ, t, JaK, pdecom, (come,i∗[e])e∈[0,τ), ch3, ctr, salt

)
2 : if ch3[τ0κ0 + τ1κ1 : τ0κ0 + τ1κ1 + w − 1] ̸= 0w then return 0

3 : µ := H1 (pk||msg :: 2λ)

4 : i∗ := ChallDec (ch3[0 : τ0κ0 + τ1κ1 − 1])

5 : Reconstruct VOLEs and check commitments

6 : out := VOLEReconstruct
(
i∗, pdecom, {come,i∗}τ,τ , salt

)
7 : if out = ⊥ :

8 : return 0

9 : else :

10 : Parse out as out := (hcom,Q
′
0, . . . ,Q

′
τ−1).

11 : ch1 := H1
2 (µ̃||hcom||c1|| · · · ||cτ−1||salt :: 5λ+ 64)

12 : Check VOLE’s consistency

13 : for e ∈ [τ ]

14 : (δ0, . . . , δκe−1) := BitDec(i∗[e])

15 : if µe > κe:

16 : zeropad := 0ℓVOLEHashMask×(µe−κe)

17 : else :

18 : zeropad := ε

19 : D̃e := [δ0 · ũ · · · δκe−1 · ũ zeropad] ∈ {0, 1}ℓVOLEHashMask×µe

20 : if e = 0 then Q0 := Q′
0

21 : if e > 0 then Qe := Q′
e ⊕ [δ0 · ce · · · δk̂e−1 · ce zeropad]

22 : endfor

23 : Q := [Q0 · · ·Qτ−1]

24 : Q̃ := VOLEHash
(
ch1,Q :: ℓVOLEHashMask

)
∈ {0, 1}ℓVOLEHashMask×ρ

25 : hV := H1(Q̃⊕ [D̃0 · · · D̃τ−1] :: 2λ)

26 : ch2 := H2
2(ch1||ũ||hV ||t :: 2λ)

27 : Check PKP’s consistency

28 : ch3 := H3
2(ch2||JaK||ctr :: τ0κ0 + τ1κ1 + w)

29 : bV := V.Check-PKP(seed, pk, t, ∆, q, qcz, JaK)

30 : if bV = 1 and ch3 = ch3 then

31 : return 1

32 : else return 0
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5 Parameter Sets and Sizes

We provide several parameter sets using the nomenclature PERK-X-Y where
X ∈ {1, 3, 5} denotes the security level and Y ∈ {Short,Fast} refers to size / per-
formance trade-off considered for the parameter set.

5.1 PKP parameters

The PKP parameters paramPKP := (q,m, n) used in PERK are given in Table 1.
Parameters were chosen to minimize the signature size while offering concrete
bit-security of PKP above the NIST specified thresholds for category 1, 3 and 5.
We give full details on estimating the security of PKP in Section Section 7.2.1.

Instance q n m

PERK-1 2048 64 27

PERK-3 2048 92 43

PERK-5 2048 118 59

Table 1: PKP parameters used in PERK

5.2 MPC and VOLE parameters

The tree parameters paramTreePRG := (τ, κ,N, Topen, w) are given in Table 2. The
number of parties and iterations is governed by the knowledge soundness of
the protocol. The MPC parameters are also chosen to guarantee a soundness
probability of 2−λ for λ ∈ {128, 192, 256} for category 1, 3 and 5 respectively.
Following common practice we propose two different parameter sets, a short
variant using N ′ ∈ {2048, 4096} and a fast variant using N ′ ∈ {128, 256}, where
N ′ denotes the number of leaf nodes in each individual tree. The table below
lists the total number of leaves N := τ2κ in all the trees together.

The VOLE related parameters paramVOLE := (τ, µ, ρ) are given in Table 3.
The parameter ρ denotes the dimension of finite field (F2ρ) in which the VOLE
correlations (seen as polynomials) reside. We also need to compute the PKP
relation HPx using the VOLE correlations therefore the fields should maintain
the following tower relationship: F2 ⊂ Fq ⊂ F2ρ and F2 ⊂ F2κ ⊆ F2µ ⊂ F2ρ .

The witness parameters paramwitness := (n, d, ℓrow, ℓ, ℓCZMask, ℓVOLEHashMask, ℓ̂)
are given in Table 4. To prove the knowledge of the secret witness P ∈ Fn×nq ,
we are using ℓ̂ VOLE correlations that are computed using paramwitness where:

• n is the number of rows and columns in the permutation matrix ;
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• d := ⌈log4(n)⌉ is the degree of polynomials, which will help prove the knowl-
edge of the witness using VOLE correlations ;

• ℓrow := d + 6 is the length of (compressed) witness (in bits) for each row of
the secret permutation matrix ;

• ℓ := n · ℓrow is the length of the (compressed) witness (in bits) for full secret
permutation matrix ; This is essentially the witness size that affects the
signature sizes ;

• ℓCZMask := (d − 1) · ρ is the number of bits required to construct masking
VOLE correlations in F2ρ × F2ρ required in P.CheckZero ;

• ℓVOLEHashMask := λ+B is the number of bits required for masking VOLEHash.
We always set B := 16 for all our parameter sets and instances ;

• ℓ̂ := ℓVOLEHashMask + ℓ+ ℓCZMask is the number of bits that should be commu-
nicated in each round. Therefore, the signature size is affected by the value
(τ − 1) · ℓ̂.

Note that in Tables 2 and 3, τ is the number of repetitions required to desired
security level ρ ≥ λ (in our case ρ > λ for all cases). Therefore, following criteria
must always be satisfied:

• τ := τ0 + τ1 = τ ′0 + τ ′1 ;
• ρ := τ ′0µ0 + τ ′1µ1 ;
• ρ ≥ λ ;
• τ0κ0 + τ1κ1 + w − log2(d) ≥ λ.

Instance τ τ0 τ1 κ0 κ1 N Topen w

PERK-1-Short 11 11 0 11 0 3200 106
9

PERK-1-Fast 16 9 7 8 7 22528 110

PERK-3-Short 16 8 8 12 11 5120
166 10

PERK-3-Fast 24 16 8 8 7 49152

PERK-5-Short 22 8 14 12 11 7424 222
8

PERK-5-Fast 32 26 6 8 7 61440 220

Table 2: BAVC parameters used in PERK
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Instance τ τ ′
0 τ ′

1 µ0 µ1 ρ

PERK-1-Short 11 11 0 12 0
132

PERK-1-Fast 16 4 12 9 8

PERK-3-Short 16 6 10 13 12
198

PERK-3-Fast 24 6 18 9 8

PERK-5-Short 22 22 0 12 0
264

PERK-5-Fast 32 8 24 9 8

Table 3: VOLE fields parameters used in PERK

Instance B d ℓrow ℓ ℓCZMask ℓ̂

PERK-1

16

3 9 576 264 984

PERK-3 4 10 920 594 1722

PERK-5 4 10 1180 792 2244

Table 4: VOLE correlations parameters used in PERK

5.3 Signature and key sizes

Table 5 presents the public key, secret key, and signature sizes of PERK. The
size of the public key pk is λ + n⌈log2(q)⌉ bits while the size of the secret key
sk is λ bits. In practice, our implementations concatenate the public key within
the secret key in order to respect the API provided by the NIST.

A PERK signature consists of:
• a salt, a hash value ch3 and a counter ctr making a subtotal of 3λ+66 bits ;
• (τ − 1) VOLE correlation c1, . . . , cτ−1 each of length ℓ̂ bits ;
• τ commitments (come,i∗[e])e∈[τ ] each of size 2λ bits ;
• a masked witness t of size n · ℓrow bits ;
• a VOLEHash value ũ of size λ+ 16 bits ;
• some opening information pdecom of size λ · Topen bits ;
• a polynomial JaK represented as coefficients with ⌈log4(n)⌉ · ρ bits.

Overall, for a security level λ, the signature size is given by:

|σ| = 4λ+ 82︸ ︷︷ ︸
salt,ctr,ch3,ũ

+ τ · 2λ︸ ︷︷ ︸
commitments

+ (τ − 1) · ℓ̂︸ ︷︷ ︸
VOLE correlations

+ ⌈log4(n)⌉ · ρ︸ ︷︷ ︸
JaK

+λ · Topen︸ ︷︷ ︸
pdecom

+n · (⌈log4(n)⌉+ 6)︸ ︷︷ ︸
t

.
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Instance |sk| |pk| |σ|

PERK-1-Short 16 B 0.10 kB 3.48 kB

PERK-1-Fast 16 B 0.10 kB 4.32 kB

PERK-3-Short 24 B 0.15 kB 8.32 kB

PERK-3-Fast 24 B 0.15 kB 10.43 kB

PERK-5-Short 32 B 0.19 kB 14.83 kB

PERK-5-Fast 32 B 0.19 kB 18.22 kB

Table 5: Keys and signature sizes of PERK

6 Implementation and Performance Analysis

This section provides performance measurement of our PERK implementations.

Benchmark platform. The benchmarks have been done on a machine running
Ubuntu 22.04.2 LTS, that has 64 GB of memory and an Intel® Core™ i9-13900K
@ 3.00 GHz for which the Hyper-Threading and Turbo Boost features were
disabled. For each parameter set, the results have been obtained by computing
the average from 10 and 500 random instances for the reference and optimized
implementation, respectively. The scheme has been compiled with gcc (version
11.4.0) and the following third party libraries have been used: XKCP (commit
7fa59c0ec4) and djbsort (version 20190516).

Remark on the instantiation of PERK. The overall efficiency of PERK
is determined to a large extent by the symmetric primitives employed in its
construction. The PERK’s pseudorandom generator (PRG) may be instantiated
using AES/Rijndael or SHA3, while hash functions are realized through SHA3.
For benchmarking purposes, we provide results for two instantiations of the
commitment scheme: one using AES/Rijndael and another using SHA3. It is
important to emphasize that the choice of instantiation can lead to substantial
variations in performance.

6.1 Reference implementation

The reference implementation is written in C and have been compiled using the
compilation flags -O3 -funroll-loops -flto. The performances of our refer-
ence implementation on the aforementioned benchmark platform are described
in Table 6-8.
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Instance Keygen Sign Verify

PERK-1-Short 50 K 13615 M 13608 M

PERK-1-Fast 50 K 1947 M 1943 M

PERK-3-Short 93 K 89057 M 89184 M

PERK-3-Fast 93 K 9360 M 9323 M

PERK-5-Short 146 K 111810 M 111622 M

PERK-5-Fast 130 K 13678 M 13591 M

Table 6: Performances of the reference implementation (in CPU cycles) - AES

instantiation for both PRG and commitments

Instance Keygen Sign Verify

PERK-1-Short 47 K 11242 M 11235 M

PERK-1-Fast 45 K 1610 M 1606 M

PERK-3-Short 93 K 74494 M 74613 M

PERK-3-Fast 93 K 7842 M 7805 M

PERK-5-Short 136 K 93676 M 93507 M

PERK-5-Fast 127 K 11486 M 11402 M

Table 7: Performances of the reference implementation (in CPU cycles) - AES for
PRG and SHA3 for commitments

Instance Keygen Sign Verify

PERK-1-Short 40 K 125 M 115 M

PERK-1-Fast 38 K 30.9 M 26.3 M

PERK-3-Short 82 K 401 M 354 M

PERK-3-Fast 83 K 121 M 82.3 M

PERK-5-Short 124 K 822 M 759 M

PERK-5-Fast 120 K 254 M 193 M

Table 8: Performances of the reference implementation (in CPU cycles) - SHA3
instantiation for both PRG and commitments

6.2 Optimized implementation

A constant-time optimized implementation leveraging AVX2 instructions have
been provided. Its performances on the aforementioned benchmark platform are
described in Tables 9-11. The following optimization flags have been used during
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compilation: -O3 -funroll-loops -march=native -mavx2 -mpclmul -msse4.2
-maes.

Instance Keygen Sign Verify

PERK-1-Short 34 K 16.3 M 12.6 M

PERK-1-Fast 33 K 5.0 M 3.4 M

PERK-3-Short 66 K 143 M 130 M

PERK-3-Fast 65 K 33.5 M 23.2 M

PERK-5-Short 102 K 191 M 172 M

PERK-5-Fast 100 K 53.2 M 37.4 M

Table 9: Performances of the reference implementation (in CPU cycles) - AES

instantiation for both PRG and commitments

Instance Keygen Sign Verify

PERK-1-Short 33 K 27.8 M 24.3 M

PERK-1-Fast 33 K 6.6 M 5.0 M

PERK-3-Short 66 K 155 M 142 M

PERK-3-Fast 65 K 34.9 M 24.5 M

PERK-5-Short 101 K 236 M 217 M

PERK-5-Fast 99 K 58.4 M 42.7 M

Table 10: Performances of the reference implementation (in CPU cycles) - AES
for PRG and SHA3 for commitments
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Instance Keygen Sign Verify

PERK-1-Short 35 K 47.4 M 43.5 M

PERK-1-Fast 34 K 9.4 M 7.9 M

PERK-3-Short 66 K 142 M 129 M

PERK-3-Fast 65 K 33.4 M 23.2 M

PERK-5-Short 103 K 274 M 255 M

PERK-5-Fast 102 K 63.1 M 47.2 M

Table 11: Performances of the reference implementation (in CPU cycles) - SHA3
instantiation for both PRG and commitments

6.3 Known Answer Test values

Known Answer Test (KAT) values have been generated using the script provided
by the NIST. They are available in the folder KATs and files are the same for both
reference and optimized implementation. In addition, examples with intermedi-
ate values have also been provided in these folders. Notice that one can generate
the aforementioned test files using respectively the kat and verbose modes of
our implementation. The procedure to follow in order to do so is detailed in the
technical documentation.
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7 Security Analysis

7.1 Security proof

Our signature scheme is strongly existentially unforgeable under chosen-message
attacks (SUF-CMA-secure) in the random oracle model (ROM)6 under the as-
sumption of hardness of PKP. The proof of SUF-CMA security, written below,
happens in two stages:

• We first show that the slightly modified signature, which we call PERK′,
is existentially unforgeable under no-message attacks (EUF-NMA-secure) in
the ROM assuming the hardness of the PKP problem.

• We then show that the signature scheme PERK is SUF-CMA-secure in the
ROM by assuming that PERK′ is EUF-NMA-secure in the ROM and some
computational hardness of the functions.

We also discuss the beyond unforgeability features (BUFF) securities.

Notations. To simplify notations, we define the following variables:
• µ̃ := H1(pk||msg) ;
• a1 := (hcom, c1, . . . , cτ−1) ;
• ch1 := H1

2(µ̃||a1||salt) ;
• a2 := (ũ, hV , t) ;
• ch2 := H2

2(ch1||a2) ;
• a3 := JaK ;
• ch3 := H3

2(ch2||a3) ;
• a4 := (c1, . . . , cτ−1, ũ, t, JaK, pdecom, (come,i[e]), ctr, salt).

By these notations, we have σ = (ch3, a4). In what follows, we denote the
internally reproduced values in the verifications PERK.Verify(pk,msg, σ) and
PERK.Verify(pk,msg∗, σ) by ·̄ and ·̄∗, respectively.

Preliminaries. Hereafter, we show the extractable-binding and multi-hiding
properties of VOLE commitments. The following lemma helps us estimate the
bound for one-wayness and collision-resistant property of random oracles.

Lemma 7.1 (Random oracle graph). Let H : X → Y be the random oracle.
We consider the following random oracle graph game between a challenger and
an adversary:

1. The challenger initializes two sets V and E by ∅ and runs the adversary.
2. The adversary can query the random oracle H in the following two ways:

– The adversary queries y ∈ Y to the random oracle H;
• If y ̸∈ V, then the challenger adds node y to V.

6 If the Rijndael-based commitment is employed for Com1, then we also require the
ideal-cipher model (ICM).
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– The adversary queries x ∈ X to the random oracle H; Let H(x) = y.
• If y ∈ V but there is no edge (x′, y) ∈ E, then the adversary wins

(because it breaks onewayness).
• If an edge exists (x′, y) ∈ E with x′ ̸= x, then the adversary wins

(because it finds a collision).
• Else, the challenger adds nodes x and y to V and an edge e = (x, y)

from x to y to E.

If the adversary makes at most Q queries to H, then the adversary’s advantage
is at most Q2/|Y|.

Extractable-binding property. Hereafter, we start by showing the extractable
binding property of VOLECommit.

Lemma 7.2 (Extractable Binding). Let A be an adversary that makes qcom,1
and qcom,2 queries to Com1 and Com2, respectively, where Com1 and Com2 are
modeled as random oracles. 7 We consider the following security game, which
uses an extractor Ext defined later:

1. (hcom, salt)← ACom1,Com2(1λ, commit).
2. (u∗e,V

∗
e )e∈[τ ] ← Ext(E1Com, E2Com, hcom, salt), where E1Com and E2Com are the lists

for the random oracles Com1 and Com2.
3. (ch3, pdecom, com)← ACom1,Com2(1λ, open).
4. i← ChallDec(ch).
5. For e ∈ [τ ], (δe,0, . . . , δe,µe−1) := BitDec(i∗[e]).
6. (h̄com,Q0, . . . ,Qτ−1)← VOLEReconstructCom1,Com2(i, pdecom, com, salt).
7. Output False if

(a) h̄com = ⊥ or h̄com ̸= hcom; or
(b) Qe = V ∗e ⊕ [δe,0u

∗
e · · · δe,µe

u∗e] for all i ∈ [τ ].
8. Output True otherwise.

Let AdvExtVOLE = Pr[A wins] be A’s advantage. We have

AdvExtVOLE ≤ (qcom,1 +N)2/22λ + (qcom,2 + 1)2/22λ.

Proof. The proof is essentially the same as that in FAEST’s specification. We
define the straight-line extractor Ext as follows:

1. Given hcom, find a preimage {come,i} under Com2 from the list E2Com. If there
is no preimage or multiple ones, then output ⊥ and abort.

2. For each e ∈ [τ ] and i ∈ [Ne]: find preimages seede,i of come,i from E1Com.
If there is no such preimage, then set seede,i = ⊥. If there are multiple
preimages, then output ⊥ and abort.

3. For each e ∈ [τ ], compute (ue,Ve) as follows:
• Case 1: If Ext finds all preimages seede,i for e, then it computes Ve and
ue honestly via ConvertToVOLE.

7 If the Rijndael-based commitment is employed for Com1, then we also require the
ideal-cipher model (ICM).
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• Case 2: If a single preimage is missing, then set∆e = j∗. It then computes
(ue, qe,0, . . . , qe,µe−1) via ConvertToVOLE with permuted seed with ∆e

and sets Qe = [qe,0 · · · qe,µe−1]. It sets Ve := Qe ⊕ [δe,0ue · · · δe,µe−1ue].

• Case 3: If multiple preimages are missing, then output ⊥ and abort.

4. Output (ue,Ve)e∈[τ ].

5. If it fails to extraction, then it adds the image that missed the preimage to
V1
Com or V2

Com.

Let Fail be the event that the extractor fails to output (ue,Ve)e. Because of
the random oracle graph game, we have

Pr[Fail] ≤ (qcom,1 +N)2/22λ + (qcom,2 + 1)2/22λ,

where we add N for qcom,1 since we have at most N commitments missing preim-
ages.

If ¬Fail, then hcom uniquely determines (come,i)e,i and each come,i uniquely
determines seede,i for e ∈ [τ ] and i ∈ [Ne]. (NOTE: For each e ∈ [τ ], at most one
of seede,i can be ⊥.) In both cases (case 1 or case 2), the extraction is perfect,
as explained in FAEST’s specification. Thus, the extractor’s failing probability
is at most

(
(qcom,1 +N)2 + (qcom,2 + 1)2

)
· 2−2λ.

Multi-hiding property. We next show the multi-hiding property of VOLECommit.
To do so, we first define the simulation algorithm, SimVOLECommit.

75



Algorithm 7.1: SimVOLECommit
(
i, salt, ℓ̂

)
Public information and inputs

Public information: A number of iterations τ , a number of parties N =
∑τ−1

e=0 Ne, k̂e =

log2(Ne), ρ = k0τ0 + k1τ1

Prover’s input: i and salt and ℓ̂. We assume that i is accepted.

Output

A commitment hcom ∈ {0, 1}2λ, a sibling path pdecom, unopened commitments (come,i[e])e,

VOLE corrections (c1, . . . , cτ−1), and VOLE correlation secrets u

1 : hidden := {N − 1 + ψ(e, i[e]) : e ∈ [0, τ)}

2 : opened := {N − 1, . . . , 2N − 2} \ hidden

3 : for i from N − 2 downto 0 do

4 : if 2i+ 1 ∈ opened and 2i+ 2 ∈ opened then

5 : opened = opened ∪ {i}

6 : endfor

7 : nodes[0], . . . , nodes[2N − 2] = ∅, . . . , ∅

8 : for i ∈ [0, N − 1) do

9 : if 2i+ 1 ∈ opened and 2i+ 2 ∈ opened then

10 : (nodes[2i+ 1], nodes[2i+ 2])← PRG(nodes[i], salt)

11 : else

12 : (nodes(j)[2i+ 1], nodes(j)[2i+ 2])← {0, 1}2λ

13 : for e ∈ [0, τ) do

14 : for i ∈ [0, Ne) do

15 : seede,i = nodes[N − i+ ψ(e, i)]

16 : if i = i[e] then

17 : come,i ←$ {0, 1}2λ

18 : else

19 : come,i ← Com1(salt, e, i, seede,i)

20 : hcom ← Com2(salt, {come,i})

21 : decom = (nodes, (come,i))

22 : (pdecom, (come,i[e])e)← VC.Open
(
decom, i

)
23 : (u, c1, . . . , cτ−1)←$ (Fℓ̂

2)
τ

24 : return (hcom, pdecom, (come,i[e])e, c1, . . . , cτ−1,u).

Lemma 7.3 (Multi Hiding). Let us consider the following Q-multi-hiding
game for VOLECommit between an adversary A and a challenger. Let b∗ ∈ {0, 1}.

1. For j ∈ [Q]:
(a) Take (r(j), salt(j)) uniformly at random.
(b) Take a random challenge ch

(j)
3 ← {0, 1}τ0κ0+τ1κ1+w until it is accepted:
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i. If ch(j)3 [τ0κ0 + τ1κ1 : τ0κ0 + τ1κ1 + w − 1] ̸= 0w, then re-sample.
ii. Compute i(j) by ChallDec(ch

(j)
3 [0 : τ0κ0 + τ1κ1 − 1]). If the indices

lead to len(revealed) > Topen, 8 then re-sample.
(c) If b∗ = 0:

i. Compute (h
(j)
com, decom

(j), c
(j)
1 , . . . , c

(j)
τ−1,u

(j),V (j))← VOLECommit(r(j), salt(j), ℓ̂),
where decom(j) = (nodes(j), (com

(j)
e,i )).

ii. Compute
(
pdecom(j),

(
com

(j)

e,i(j)[e]

))
← VC.Open(decom(j), i(j)).

(d) If b∗ = 1:
i. Compute (h

(j)
com, pdecom

(j), (com
(j)

e,i(j)[e]
)e, c

(j)
1 , . . . , c

(j)
τ−1,u

(j))← SimVOLECommit(i(j), salt(j)).

2. b← A
((
h
(j)
com, pdecom

(j), (com
(j)

e,i(j)[e]
), c

(j)
1 , . . . , c

(j)
τ−1,u

(j), ch
(j)
3

)
j∈[Q]

)
.

3. Output True if b = b∗; otherwise, output False.

Then, the adversary’s advantage

AdvHideVOLE[Q] := |Pr[A wins | b∗ = 0]− Pr[A wins | b∗ = 1]|

is at most k̂·AdvPRGPRG1 [Q, τ ]+AdvPRFPRG2,Com1 [Q, τ ], where k̂ = ⌈log2(N)⌉+1.

Proof. We use the standard GGM tree argument.

G0: This is the original game with b∗ = 0. Thus, we have Pr[W0] = Pr[A wins |
b∗ = 0].

G1: We gradually replace GGM trees constructed in VC.Commit by following
i(j). We define G1,k for k = 0, . . . , k̂ as follows:
G1,k: We modify VC.Commit invoked from VOLECommit(r(j), salt(j), ℓ̂) as

follows:
1. Define opened(j) := {N − 1, . . . , 2N − 2} \ {N − 1+ψ(e, i(j)[e]) : e ∈

[τ ]}.
2. For i from N − 2 downto 0: if both 2i + 1, 2i + 2 ∈ opened(j) then

opened(j) := opened(j) ∪ {i}.
3. For i ∈ [N − 1]:

(a) If i ∈ [2k] and i ̸∈ opened(j), then (nodes(j)[2i+ 1], nodes(j)[2i+
1])← {0, 1}2λ;

(b) else, (nodes(j)[2i+1], nodes(j)[2i+1])← PRG1(salt, nodes[i] :: 2λ).
We note that the width of co-path is at most τ . Hence, this introduces
the difference at most AdvPRGPRG1 [Q, τ ].

We note that, at the final game G1,k̂, the hidden seed
(j)

e,i(j)[e]
= nodes(j)[N −

1 + ψ(e, i(j)[e])] are chosen uniformly at random.
G2: We next replace (come,i(j)[e])

(j) with random string and r
(j)

0,i(j)[e]
with ran-

dom vector for all e ∈ [0, τ) and j ∈ [Q] in the computation of ConvertToVOLE(Ne, (seed
(j)
e,i )i∈[0,Ne), salt

(j), ℓ̂)

invoked by VOLECommit(r(j), salt(j), ℓ̂). This is justified by the joint PRF se-
curity of PRG2 in ConvertToVOLE and Com1 since seed(j)

e,i(j)[e]
are hidden from

the adversary. Thus, the difference is at most AdvPRFPRG2,Com1 [Q, τ ].
8 See VC.Open (decom, i∗). Note that decom is independent of the computation of
revealed.
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G3: Next, we replace u(j)
e for all e and j with random vectors in the computation

of ConvertToVOLE(Ne, (seed
(j)
e,i )i∈[0,Ne), salt

(j), ℓ̂) invoked by VOLECommit(r(j), salt(j), ℓ̂).
Since u

(j)
e =

∑
i∈[0,Ne):i ̸=i(j)[e] PRG2(salt

(j), seed
(j)
e,i :: ℓ̂) ⊕ r

(j)

0,i(j)[e]
, this does

not change the distribution from the previous game and we have Pr[W2] =

Pr[W3]. Now, in this game, every u
(j)
e for e ∈ [τ ] is random. Thus, c(j)i =

u
(j)
0 ⊕u

(j)
i is also random and (u(j), c

(j)
1 , . . . , c

(j)
τ−1) is random. Therefore, this

game is equivalent to the game for b∗ = 1, and we have Pr[W3] = Pr[A wins |
b∗ = 1].

Wrapping up, we have k̂ · AdvPRGPRG1 [Q, τ ] + AdvPRFPRG2,Com1 [Q, τ ] as the
upper bound.

Security proofs for the EUF-NMA security. We here consider the security
of the slightly modified signature scheme denoted by PERK′. Concretely speak-
ing, we replace “(mseed, salt) ← H3(sk||µ||rand)” in line 3 of PERK.Sign with
“(mseed, salt) ←$ {0, 1}λ+2λ”. Our proof mainly follows that in FAEST’s speci-
fication, but we modify several points to adopt their proof in our setting, e.g.,
showing the formal proof for grinding and optimizations.

Theorem 7.1 (EUF-NMA security in the ROM). Let B be an adversary
against the EUF-NMA security of PERK′. Let qcom,1, qcom,2, q1, q2,1, q2,2, q2,3,
and q4 be the number of queries B made to Com1, Com2, H1, H1

2, H2
2, H3

2, and
H4, respectively. Suppose that VOLEHash is an εv-almost universal hash fam-
ily (Lemma 4.1). We have another adversary C against the PKP assumption
(Definition 2.10) such that

Adveuf-nma
B ≤ AdvOWC + AdvPRExpandKernelVector + AdvPRExpandPermutation

+ (qcom,1 + qcom,2 + q1 + (N + 2)q2,1 + 2q2,2 + q2,3)
2 · 2−2λ

+ q2,1

(
τ

2

)
· ϵv + q2,2 · 2−ρ + (q4 + q2,2)

2 · 2−(3λ+64)

+ q2,3d · 2−(τ0κ0+τ1κ1+w) + 2−λ+1.

The running time of C is about that of B.

We follow the games defined in FAEST’s specification and show the bounds
of the differences between the games.

G1: The original EUF-NMA game. We have

Pr[W1] = Adveuf-nma
B .

We note that the random oracles and commitment are implemented by lazy
sampling and the lists, E1Com, E2Com, E1, E12 , E22 , E32 , and E4. Here, we use E
because they will be edge sets of the random oracle graphs.

78



G2: In this game, we consider the random oracle graph games. To do so, we
additionally consider the vertex sets V1

Com, V2
Com, V1, V1

2 , V2
2 , and V3

2 . If the
adversary wins the random oracle graph game, then we abort.
Let Faili be the event that the adversary wins the random oracle graph game.
For any Gi, we have Pr[Wi] = Pr[Faili] · Pr[Wi | Faili] + Pr[¬Faili] · Pr[Wi |
¬Faili] ≤ Pr[Faili] + Pr[Wi | ¬Faili]. We note that if Fail2 does not occur,
then G2 is equivalent to G1. Thus, we have Pr[W1] = Pr[W2 | ¬Fail2].

G3: We next use the extractor Ext in the proof of Lemma 7.2 on every query
(µ̃, hcom, ..., salt) to H1

2 to obtain (ue,Ve)e∈[τ ]. If the adversary’s forgery is
valid but one of the extracting test fails, then the adversary loses. Because of
the modification introduced G2, we have Pr[W2 | ¬Fail2] = Pr[W3 | ¬Fail3].
But, the number of queries blows up because of the queries the extractor
made. We have

q̄com,1 = qcom,1 +Nq2,1 and q̄com,2 = qcom,2 + q2,1,

since Ext is invoked at most q2,1 times and each invocation adds at most N
queries or one query to Com1 or Com2, respectively.

G4: We next modify H1
2; if the query is extractable, then it runs the VOLE con-

sistency checks with extracted (ue,Ve)e∈[τ ]. While we omit the details of the
check, FAEST’s specification shows that the probability that the consistency
check fails ϵv

(
τ
2

)
, where ϵv is universality of VOLEHash, by using [BBD+23c,

Thm.2]. Since we take VOLEHash from FAEST, we have the same probabil-
ity. Thus, we have

Pr[W3 | ¬Fail3] ≤ Pr[W4 | ¬Fail4] + q2,1

(
τ

2

)
ϵv,

where ϵv is universality of VOLEHash.
G5: We next modify H2

2 to force the chain of hash values. On query (ch1, hV , ...)
to H2

2, we do as follows:
– If ch1 has no preimage, then query ch1 under H1

2; that is, if ch1 ̸∈ V1
2 ,

then add ch1 to V1
2 .

– If hV has no preimage, then query hV under H1; that is, if hV ̸∈ V1, then
add hV to V1.

We have Pr[W4 | ¬Fail4] = Pr[W5 | ¬Fail5]. By this modification, the bound
of the random oracle queries to the random oracle graph game are

q̄1 = q1 + q2,2 and q̄2,1 = q2,1 + q2,2.

G6: We modify H2
2 as follows: On each new query (ch1, hV , ...) to H2

2, if the query
related to ch1 is extractable and VOLE-consistent, then do as follows:
1. Take a random ch2 ←$ {0, 1}3λ+64. If ch2 is already queried to H4, then

it aborts.
2. If the ZK soundness check below fails, then abort.

(a) Let α
$,ch2←− Fcn+m2ρ . That is, we take a random sample α ←$ Fcn+m2ρ

and put (ch2,α) to E4 for H4.
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(b) Compute e ∈ Fcn+m2ρ , which is a vector consisting of the degree d
coefficients of fj(X) for j = 0, . . . , cn+m− 1 constructed from the
extracted witness.

(c) If e ̸= 0 but
∑cn+m−1
j=0 αjej = 0, then the output “fail”. Otherwise,

output “success”.
3. Otherwise, look up a preimage Ṽ of hV . If a preimage does not exist,

then abort.
4. Otherwise, return ch2.

On the collision test for step 1, we have a bound (q4 + q2,2)
2/23λ+64. If α is

uniformly at random, then the probability that the check in step 2 fails is at
most ϵzk = 1/2ρ.
Taking a union bound, we have

Pr[W5 | ¬Fail5] ≤ Pr[W6 | ¬Fail6] + q2,2 · 2−ρ + (q4 + q2,2)
2 · 2−(3λ+64).

G7: We next modify H3
2 as follows: On query (ch2, JaK, ctr) to H3

2, we do as follows:
• If ch2 has no preimage, then query ch2 under H2

2; that is, if ch2 ̸∈ V2
2 ,

then add ch2 to V2
2 .

We have Pr[W6 | ¬Fail6] = Pr[W7 | ¬Fail7]. The number of random oracle
queries is

q̄2,2 = q2,2 + q2,3.

G8: We modify the handling H3
2 on a query (ch2, JaK, ctr) as follows:

1. If ch2 has no preimage, then abort. Otherwise, let (ch1, hV , ...) be the
preimage of ch2.

2. If hV has no preimage, then abort.
3. Otherwise, extract u and V , and define the witness w.
4. Sample ch3 ← {0, 1}τ0κ0+τ1κ1+w.
5. If w doesn’t satisfy the constraints and the bad event occurs, then abort

the game. The bad event is the event that, for uniformly random ch3 ∈
{0, 1}τ0κ0+τ1κ1+w in step 3, 1) ch3 passes the verification test (Topen and
0w check) and 2) for uniformly random ch3 ∈ {0, 1}τ0κ0+τ1κ1+w, we have
∆ = ∆′, where ∆ is computed from ch3 and ∆′ is computed from the
query JaK by the adversary.

The probability 1) is |#accepted challenges|/2τ0κ0+τ1κ1+w and the probabil-
ity 2) is at most d/|#accepted challenges| since JaK is treated as (d−1)-degree
polynomial ad−1Xd−1+ · · ·+a1X+a0 and the verification algorithm checks
if qf +

∑d−2
i=0 qsi ·∆i =

∑d−1
i=0 ai∆

i in V.CheckZero invoked by V.Check-PKP.
Thus, we have the bound

Pr[W7 | ¬Fail7] ≤ Pr[W8 | ¬Fail8] + q2,3 ·
d

|#accepted challenges|
· |#accepted challenges|

2τ0κ0+τ1κ1+w

= Pr[W8 | ¬Fail8] + q2,3 · d · 2−(τ0κ0+τ1κ1+w).

G9: We next modify the key-generation algorithm. In the experiment, the key-
generation algorithm chooses x′

$←− ker(H) and π
$←− Sn instead of com-

puting x′ ← ExpandKernelVector(kerseed,H) and π ← ExpandPermutation(permseed).
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Pr[W8 | ¬Fail8] ≤ Pr[W9 | ¬Fail9]
+ AdvPRExpandKernelVector + AdvPRExpandPermutation.

We then discuss the evaluation of Pr[Fail9] and the reduction to the PKP
problem.
Evaluation of Pr[Fail9]. The numbers of queries to the random oracles are now

q̄com,1 = qcom,1 + q2,1N, q̄com,2 = qcom,2 + q2,1,

q̄1 = q1 + q2,2, q̄2,1 = q2,1 + q2,2, and q̄2,2 = q2,2 + q2,3.

Thus, the advantage of the random oracle games is at most

Pr[Fail9] ≤ q̄2com,1/22λ + q̄2com,2/2
2λ + q̄21/2

2λ + q̄22,1/2
5λ+64 + q̄22,2/2

2λ

≤ (qcom + qcom,2 + q1 + (N + 2)q2,1 + 2q2,2 + q2,3)
2/22λ.

Reduction to PKP.
We construct a reduction algorithm C using B in the final game G9 condi-

tioned on that Fail9 does not occur. The reduction algorithm C against our PKP
assumption (Definition 2.10) is defined as follows:

1. It is given a random seed Hseed
$←− {0, 1}λ and x′ ∈ Fnq , where M ←

ExpandMatrixM(Hseed), H := [Im M ] ∈ Fm×nq , x′ $←− ker(H), π $←− Sn,
and x := π−1(x′). It wants to output π̃ such that H

(
π̃(x)

)
= 0.

2. It sets pk = (Hseed,x) and run B in G9.
3. Finally, B outputs (m∗, σ∗) and stops. If B wins and Fail9 does not occur,

then C extracts the witness P from the random oracle queries, and outputs
π̃ corresponding to P .

Since the simulation of C is perfect, if B wins the game, then C can extract
the witness P from B’s queries to the random oracles. Thus, we have

Pr[W9 | ¬Fail9] ≤ AdvOWC .

Security proofs for the SUF-CMA security. We follow the proof in FAEST’s
specification while we consider an optimized version and we will repair some gaps
in the original proof. Thus, we need to consider a special form of Fiat-Shamir
with aborts, which only samples ch3 instead of the whole. Hence, we enhanced the
repaired proofs for 3-round Fiat-Shamir with aborts in Devevey et al. [DFPS23]
and Barbosa et al. [BBD+23a]. To consider SUF-CMA security, we also employ
the techniques in [KX24b].

Theorem 7.2 (SUF-CMA security in the ROM). Let A be an adversary
against the EUF-CMA security of PERK. Let Qprg,1, Qcom,1, Qcom,2, Q1, Q2,1,
Q2,2, and Q2,3 be the number of queries A made to PRG1, Com1, Com2, H1, H1

2,
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H2
2, and H3

2, respectively. Let Qsig be the number of queries A made to the signing
oracle. Let Q̃sig be the number of queries the signing oracle made to H3

2. We then
have an adversary B against the EUF-NMA security of PERK′ satisfying

Advsuf-cma
A ≤ Adveuf-nma

B +Qsig · AdvPRFH3

+ AdvCollPRG1 [Qprg,1 + (N − 1)Qsig]

+ AdvCollCom1 [Qcom +NQsig] + AdvCollCom2 [Qcom,2 +Qsig]

+ AdvCollH1 [Q1 + 2Qsig] + AdvCollH
1
2 [Q2,1 +Qsig]

+ AdvCollH
2
2 [Q2,2 +Qsig] + AdvCollH

3
2 [Q2,3 + Q̃sig]

+Qsig(Q2,1 +Qsig)2
−2λ +Qsig(Q2,2 +Qsig)2

−(5λ+64) + Q̃sig(Q2,3 + Q̃sig)2
−2λ

+ k̂ · AdvPRGPRG1 [Qsig, τ ] + AdvJPRFPRG2,Com1 [Qsig, τ ]

+ AdvNICom1 [τQsig].

Remark 7.1. Let us discuss the order of Q̃sig. Let r := |# accepted challenges|/2τ0κ0+τ1κ1+w.
We let Q̃sig := (2/r) · Qsig. This Q̃sig gives us Pr[# success is less than Qsig] ≤
exp(−Qsig/4) and the right-hand side is negligible if Qsig = ω(log(λ)). (See
e.g., [KX24a, Pf. of Thm.1].)

Corollary 7.1 (EUF-CMA security in the ROM). Let the parameters be
the same as Theorem 7.2. We then have an adversary B against the EUF-NMA
security of PERK′ satisfying

Adveuf-cma
A ≤ Adveuf-nma

B +Qsig · AdvPRFH3

+ AdvCollH1 [Q1 + 2Qsig] + AdvCollH
1
2 [Q2,1 +Qsig] + AdvCollH

2
2 [Q2,2 +Qsig]

+Qsig(Q2,1 +Qsig)2
−2λ +Qsig(Q2,2 +Qsig)2

−(5λ+64) + Q̃sig(Q2,3 + Q̃sig)2
−2λ

+ k̂ · AdvPRGPRG1 [Qsig, τ ] + AdvJPRFPRG2,Com1 [Qsig, τ ].

In what follows, we denote Wi the event that the adversary wins in Gi.

G1: The original SUF-CMA game. We have

Pr[W1] = Advsuf-cma
A .

G2: The signing oracle chooses (mseed, salt)←$ {0, 1}λ+2λ instead of (mseed, salt) :=
H3(sk||µ̃||rand).
Since mseed is kept secret in the whole procedure, we can treat mseed as a
one-time secret key of PRF. Thus, the difference between G1 and G2 is

|Pr[W1]− Pr[W2]| ≤ Qsig · AdvPRFH3 .

Remark 7.2. If the signature scheme is deterministic, we use the argument
for the ROM in [BPS16, Thm.4], which leads to the inequality

Pr[W1] ≤ 2 · Pr[W2].
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G3: Next, we introduce a collision check for PRG for the GGM tree, Com1, Com2,
H1, H1

2, H2
2, and H3

2. If there is a collision among the queries to those oracles
in the whole security game, then the challenger aborts the game. We easily
have

|Pr[W2]− Pr[W3]| ≤ AdvCollPRG1 [Qprg,1 + (N − 1)Qsig]

+ AdvCollCom1 [Qcom +NQsig] + AdvCollCom2 [Qcom,2 +Qsig]

+ AdvCollH1 [Q1 + 2Qsig] + AdvCollH
1
2 [Q2,1 +Qsig]

+ AdvCollH
2
2 [Q2,2 +Qsig] + AdvCollH

3
2 [Q2,3 + Q̃sig].

Remark 7.3. If we only consider the EUF-CMA security, then we do not
need collision checks for PRG1 for the GGM tree, Com1, Com2, and H3

2.

G4: The signing oracle programs H1
2 by choosing ch1 ←$ {0, 1}5λ+64.

Since salt are chosen uniformly at random over {0, 1}λ, a1’s min-entropy is
at least 2λ. The adaptive reprogramming technique shows that

|Pr[W3]− Pr[W4]| ≤ Qsig(Q2,1 +Qsig) · 2−2λ.

NOTE: Since we use 2λ-bit salt to compute ch1, we do not need additional
games that make hcom random.

G5: The signing oracle programs H2
2 by choosing ch2 ←$ {0, 1}2λ.

We write a reduction as follows: The reduction algorithm first computes a1,
chooses ch1, and a2. It then queries (ch1, a2) to its oracle and obtains ch2.
We have

|Pr[W4]− Pr[W5]| ≤ Qsig(Q2,2 +Qsig) · 2−(5λ+64).

NOTE: We do not need to program H4.
G6: The signing oracle programs H3

2 by choosing ch3 ←$ {0, 1}τ0κ0+τ1κ1+w.
We write a reduction as follows: The reduction algorithm first computes a1,
chooses ch1, computes a2, and chooses ch2, and computes a3. It then queries
(ch2, a3) to its oracle and obtains ch3. Since ch2 has a min-entropy at least
2λ, we have

|Pr[W5]− Pr[W6]| ≤ Q̃sig(Q2,3 + Q̃sig) · 2−2λ,

G7: We then modify the order of sampling;
1. Sample ch1 and ch2 uniformly at random.
2. Sample ch3,0, . . . , ch3,B−1 ← {0, 1}τ0κ0+τ1κ1+w until it is accepted; define

ch3 := ch3,B−1.
3. Run the prover algorithm.
4. Reprogram H1

2(µ||hcom||c1|| · · · ||cτ−1||salt) := ch1.
5. Reprogram H2

2(ch1||ũ||hV ||t) := ch2.
6. For ctr ∈ [B], reprogram H3

2(ch2||JaK||ctr) := ch3,ctr.
This is just a conceptual change of the order, and we have

Pr[W6] = Pr[W7].
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G8: Next, we make the signature uniformly at random as possible as FAEST’s
proof. Intuitively speaking, this corresponds to the replacement of the prover
algorithms in the signing oracle with the simulator algorithms.
• G8,1: On each signing query, we use

(
hcom, pdecom, (come,i[e]), c1, . . . ,

cτ−1,u
)
← SimVOLECommit(i, salt, ℓ̂) and adjust V to be consistent

with ∆ and q induced by ch3. We stress that SimVOLECommit samples
u and c1, . . . , cτ−1 uniformly at random. Following FAEST’s proof, this
modification is justified by the multi-hiding property of VOLECommit.
Concretely speaking, the upper bound is

|Pr[W7]− Pr[W8,1]| ≤ AdvHideVOLE[Qsig].

Now, the distribution of (u,V ) is independent of c1, . . . , cτ−1.
• G8,2: On each signing query, we sample ũ and Ṽ at random instead of

computing VOLEHash; after that, we adjust the last ℓVOLEHashMask =
λ + B rows of u and V to make them be consistent with ch1. Since
VOLEHash is Fℓ+λ2 -hiding (Lemma 1 in FAEST’s spec), the distributions
are the same. We have

Pr[W8,1] = Pr[W8,2].

• G8,3: Next, on each signing query, we choose JaK uniformly at random in-
stead of computing fmask(X)+

∑
i αifi(X) and adjust the middle ℓCZMask

rows of u and V . Correctly speaking, we compute fi(X), choose JaK
uniformly at random while it is consistent with q and ∆, then com-
pute fmask(X) = JaK −

∑
i αifi(X); we then adjust Jui′,k′Ki′∈[d−1],k′∈[ρ],

which decide the coefficients of (d−1)-degree polynomial fmask(X). Since
Jui′,k′Ki′∈[d−1],k′∈[ρ] are hidden from the adversary, the modification in
this game does not change anything. Thus, we have

Pr[W8,2] = Pr[W8,3].

• G8,4: Finally, on each signing query, we replace t = w+u[ℓ] with random
one since JaK is independent of w. This modification doesn’t change the
distribution because u[ℓ] is chosen uniformly at random and is not used
elsewhere. Thus, we have

Pr[W8,3] = Pr[W8,4].

G9: In this game, the adversary loses if there exists (msg, σ = (ch3, a4)) ∈ Q
such that
• (ā1, ch1) = (ā∗1, ch

∗
1) and ch3 ̸= ch∗3; or

• (ā1, ch1, . . . , ā3, ch3) = (ā∗1, ch
∗
1, . . . , ā

∗
3, ch

∗
3) and a4 ̸= a∗4.

If there is a difference between G8 and G9, then the adversary submits new
(msg∗, (ch∗3, a

∗
4)) such that there exists (msg, (ch3, a4)) ∈ Q satisfying either

one of the conditions. Let h̄com and h̄∗com be the results of VC.Reconstruct
from ch3 and ch∗3 respectively.
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Case 1: Suppose that (ā1, ch1) = (ā∗1, ch
∗
1) and ch3 ̸= ch∗3. Since both chal-

lenges are accepted, we have i ̸= i∗, where i := ChallDec(ch3[0 : τ0κ0+τ1κ1−
1]) and i∗ := ChallDec(ch∗3 [0 : τ0κ0 + τ1κ1 − 1]). On the other hand, we have
h̄com = h̄∗com since ā1 = ā∗1. Since we checked the collision for Com2, this
implies {come,i} = {com∗e,i}. This breaks the multi-target non-invertibility
of Com1 since the adversary outputs the preimage of come,i[e] for some e
such that i[e] ̸= i∗[e], where come,i[e] is chosen uniformly at random in
SimVOLECommit. Thus, the difference is at most AdvNICom1 [τQsig], in which
the adversary receives random τQsig strings and outputs one of preimages of
the strings.
Case 2: Next, suppose that (ā1, ch1, . . . , ā3, ch3) = (ā∗1, ch

∗
1, . . . , ā

∗
3, ch

∗
3) and

a4 ̸= a∗4. Note that the condition ch3 = ch∗3 leads to i = i∗. Since (ā1, ā2, ā3) =
(ā∗1, ā

∗
2, ā
∗
3), we have (pdecom, {come,i[e]}e∈[τ ], ctr, salt) ̸= (pdecom∗, {(com∗e,i[e]}e∈[τ ],

ctr∗, salt∗).
We have four sub-cases:
• Suppose that pdecom ̸= pdecom∗. In the computation of VC.Reconstruct,

we have nodes[i+] ̸= nodes∗[i+] for some i+ ∈ revealed calculated from
i = i∗. We then consider the sub-tree of the GGM tree whose root is
i+. Let Iall be the indices of the nodes of the sub-tree and Ileaves be the
indices of the leaf nodes of the sub-tree.
We have two cases:
• If {nodes[i]}i∈Ileaves = {nodes∗[i]}i∈Ileaves , we then have a collision in

the sub-tree. That is, there is an index j ∈ Iall such that nodes[j] ̸=
nodes∗[j] but PRG1(nodes[j], salt :: 2λ) = PRG1(nodes

∗[j], salt∗ ::
2λ). However, this case is already excluded by the collision check for
PRG1 introduced in G3.

• If {nodes[i]}i∈Ileaves ̸= {nodes
∗[i]}i∈Ileaves , we have at least one index

j+ ∈ Ileaves satisfying nodes[j+] ̸= nodes∗[j+]. Let (e, i) be a pair
induced by j+ (that is, j+ = N−1+ψ(e, i)). If come,i = com∗e,i, then
we find a collision for Com1. However, this case is already excluded by
the collision check for Com1 introduced in G3. Otherwise, if come,i ̸=
com∗e,i, then we find a collision for Com2 since ā1 = ā∗1 implies h̄com =

h̄∗com. However, this cannot happen since we already exclude this
event by the collision check for Com2 introduced in G3.

• If {come,i[e]}e ̸= {com∗e,i∗[e]}, then we have {come,i}e,i ̸= {com∗e,i}e,i.
However, ā1 = ā∗1 implies h̄com = h̄∗com and we have a collision for Com2.
However, this case is already excluded by the collision check for Com2

introduced in G3.
• If ctr ̸= ctr∗, then we find a collision for H3

2 since (ch2||ā3||ctr) ̸= (ch
∗
2||ā∗3||ctr∗)

but ch3 = H3
2(ch2||ā3||ctr) = H3

2(ch
∗
2||ā∗3||ctr∗) = ch∗3. However, this case

is already excluded by the collision check for H3
2 introduced in G3.

• If salt ̸= salt∗, then we find a collision for H1
2 since ch1 = ch

∗
1 but its

corresponding inputs differs. However, this case is already excluded by
the collision check for H1

2 introduced in G3.
Summing up, the adversary cannot output a valid forgery satisfying (ā1, ch1,

. . . , ā3, ch3) = (ā∗1, ch
∗
1, . . . , ā

∗
3, ch

∗
3) and a4 ̸= a∗4 with (msg, (ch3, a4)) ∈ Q.
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The bound for both cases, we obtain that

|Pr[W8,4]− Pr[W9]| ≤ AdvNICom1 [τQsig].

Reduction to EUF-NMA. We prove that the adversary’s forgery in G9 never
involves the reprogrammed points by contradiction. Suppose that the adver-
sary’s forgery involves some of the reprogrammed points when the signing
oracle computes σ = (ch3, a4) on a query msg. Those points are related to
ch1 = H1

2(µ̃||a1||salt), ch2 = H2
2(ch1||a2), and ch3,i = H3

2(ch2||a3||i), where
i ∈ [B]. In any case, because of the collision checks, the first point ch1 =
H1

2(µ̃||a1||salt) should be reprogrammed.9 Hence, the adversary’s forgery sat-
isfies ch1 = ch

∗
1, µ̃ = ¯̃µ∗, ā1 = ā∗1, and salt = salt∗. Especially, µ̃ = ¯̃µ∗

implies msg = msg∗ because of the collision check of H1 introduced in
G3. Furthermore, msg = msg∗ implies (ch3, a4) ̸= (ch∗3, a

∗
4). Due to the

first check in G9, if (ā1, ch1) = (ā∗1, ch
∗
1) then ch3 should be equal to ch∗3.

Thus, the condition is boiled down to (msg, ā1, ch1, ch3) = (msg∗, ā∗1, ch
∗
1, ch

∗
3)

and a4 ̸= a∗4. By the way, since ch3 = ch∗3 holds and there must not be
collisions for H3

2, we have (ch2, ā3) = (ch2, ā
∗
3). Furthermore, ch2 = ch

∗
2

and the collision check for H2
2 implies (ch1, ā2) = (ch

∗
1, ā
∗
2). Thus, we have

(ā1, ch1, . . . , ā3, ch3) = (ā∗1, ch
∗
1, . . . , ā

∗
3, ch

∗
3) and a4 ̸= a∗4, but if this holds

the adversary loses in G9. This is a contradiction, and now, we can conclude
that the adversary’s forgery does not involve the points reprogrammed by
the signing oracle in G9.
Thus, we can easily construct an adversary B against the EUF-NMA security
of the signature scheme satisfying

Pr[W9] ≤ Adveuf-nma
B .

Remark 7.4. : If we only consider the EUF-CMA security, we can skip G9

and we have Pr[W8,4] ≤ Adveuf-nma
B . The argument follows:

Since we consider the EUF-CMA security, the adversary’s output should
msg∗ such that (msg∗, σ) ̸∈ Q for any σ. Suppose that the adversary’s forgery
involves some of the reprogrammed points when the signing oracle computes
σ = (ch3, a4) on a query msg ̸= msg∗. We note that, due to the collision check
for H1 introduced in G3, we have µ = H1(pk||msg) ̸= µ∗ = H1(pk||msg∗).
1. If the first reprogrammed point ch1 = H1

2(µ||a1||salt) is involved, then we
have (µ, a1, salt) = (µ∗, ā∗1, salt

∗) and µ = H1(pk||msg) = H1(pk||msg∗) =
µ∗. But, this contradicts with µ ̸= µ∗. Thus, the first reprogrammed
point should not be involved in the forgery.

2. If the second reprogrammed point ch2 = H2
2(ch1||a2) is involved, then

we have (ch1, a2) = (ch
∗
1, ā2). But, µ ̸= µ∗ and the collision check for

H1
2 implies that this cannot happen. Thus, the first and second repro-

grammed points should not be involved in the forgery. In addition, we
have ch1 ̸= ch

∗
1.

9 Otherwise, we can find the collision for H1
2 or H2

2 introduced in G3, but such event
is eliminated by the collision check.
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3. If the third reprogrammed point ch3 = H3
2(ch2||a3||ctr) for some ctr ∈ [B]

is involved, then we have (ch2, a3) = (ch
∗
2, ā
∗
3). But, ch1 ̸= ch

∗
1 and the

collision check for H1
2 implies that this cannot happen. Thus, all three

reprogrammed points should not be involved in the forgery.
Thus, the forgery does not involve the reprogrammed point, and the reduc-
tion is easily obtained. 10

Security proofs for the BUFF securities. Section 4.B.4 of the call for pro-
posal lists additional desirable security properties beyond standard unforgeabil-
ity. In this section, we evaluate the so-called BUFF securities (message-bound
signatures, exclusive ownership, and non re-signability) of our proposal. For the
definitions of BUFF securities, see [CDF+21]. The proofs in [KX24b] showed
that several MPCitH signatures achieve some BUFF securities. We adopt their
proofs in the context of the VOLEitH signature and contain the concrete proofs
below for completeness.

Message-bounding signatures (MBS). The MBS security shows that any effi-
cient adversary cannot output pk and σ with two different messages msg and
msg′ such that (pk,msg, σ) and (pk,msg′, σ) are both valid. Let A be an ad-
versary against the MBS security of PERK: A takes 1λ as input and outputs
pk, msg, msg′, and σ with msg ̸= msg′ satisfying PERK.Verify(pk,msg, σ) =
PERK.Verify(pk,msg′, σ) = 1. Let us denote the internally reproduced values in
the verifications PERK.Verify(pk,msg, σ) and PERK.Verify(pk,msg′, σ) by ·̄ and
·̄′, respectively.

• Due to the definition of PERK.Verify, we have ch3 = ch3 = ch
′
3, where ch3 =

H3
2(ch2||ā3||ctr) and ch

′
3 = H3

2(ch
′
2||ā′3||ctr). If (ch2, ā3) ̸= (ch

′
2, ā
′
3), then we

find the collision for H3
2.

• Otherwise, we have ch2 = ch
′
2, where ch2 = H2

2(ch1||ā2) and ch
′
2 = H2

2(ch
′
1||ā′2).

If (ch1, ā2) ̸= (ch
′
1, ā
′
2), then we find the collision for H2

2.
• Otherwise, we have ch1 = ch

′
1, where ch1 = H1

2(¯̃µ||ā1||salt) and ch
′
1 =

H1
2(¯̃µ
′||ā′1||salt). If (¯̃µ, ā1, salt) ̸= (¯̃µ′, ā′1, salt), then we find the collision for

H1
2.

• Otherwise, we have ¯̃µ = ¯̃µ′, where ¯̃µ = H1(pk||msg) and ¯̃µ′ = H1(pk||msg′).
Since msg ̸= msg′, thus, we find the collision for H1.

In any case, we can find a collision for either H1, H1
2, H2

2, or H3
2. Thus, if they

are collision-resistant, then PERK is MBS-secure.

Malicious strong universal exclusive ownership (M-S-UEO). We consider M-S-
UEO, which is the strongest form of exclusive ownership.11 The M-S-UEO se-
curity shows that any efficient adversary cannot output two different public key
10 We notice that FAEST’s proof did not consider the collision-resistance property of

H1, H1
2, and H2

2.
11 If the scheme is M-S-UEO-secure, then it also Strong destructive exclusive ownership

(S-DEO-secure) and Strong conservative exclusive ownership (S-CEO-secure).
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pk and pk′, two (possibly different) messages msg and msg′, and a signature
σ such that (pk,msg, σ) and (pk′,msg′, σ) are both valid. Let A be an adver-
sary against the M-S-UEO security of PERK: A takes 1λ as input and outputs
pk, pk′, msg, msg′, and σ with pk ̸= pk′ such that PERK.Verify(pk,msg, σ) =
PERK.Verify(pk′,msg′, σ) = 1. By a similar argument to the MBS security

above, we have a collision for H3
2, H2

2, or H1
2 by ch3, ch2, or ch1, respectively.

If ¯̃µ = ¯̃µ′, then we have H1(pk||msg) = H1(pk
′||msg′) and obtain a collision

(pk,msg) ̸= (pk′,msg′) for H1 since pk ̸= pk′. Thus, if the hash functions H1, H1
2,

H2
2, and H3

2 are collision resistant, then PERK is M-S-UEO-secure.

Weak non-resignability (WNR). Roughly speaking, (weak) non-resignability shows
that, given pk and σ on a hidden message msg (with some leakage)12, any efficient
adversary cannot output pk′ and σ′ such that (pk′,msg, σ′) is valid. There are
some generic conversion for EUF-CMA-secure signature scheme in the (Q)ROM.

Since the signature is produced on µ̃ := H1(pk||msg) instead of msg itself, our
signature scheme inherently implements the BUFF transform with a random
oracle H1. Don, Fehr, Huang, Liao, and Struck [DFH+24] showed the BUFF
transform allows us to achieve sNRH1,⊥. Thus, PERK satisfies sNRH1,⊥.

There is another weakened NR, NRH1,⊥, in [DFHS24], but this requires the
$-BUFF transform that computes y = H1(pk||msg||s) with salt s.

7.2 Known attacks against PKP

7.2.1 Overview of known attacks. The Permuted Kernel Problem (PKP)
problem was introduced by Shamir in 1990 [Sha90]. Despite its long standing
history in cryptographic applications [Sha90,BFK+19,Beu20,BG23] and conse-
quently many cryptanalytic efforts [Geo92,BCCG93,PC94,JJ01,LP11,KMP19,
SBC23], algorithms to solve the PKP are still rather simple adaptations of combi-
natorial enumeration and meet-in-the-middle techniques. Indeed, the best attack
on standard PKP is a meet-in-the-middle adaptation known as the KMP algo-
rithm by Koussa, Macario-Rat and Patarin [KMP19]. Even though there has
been some recent progress on attacks [SBC23], those do not improve over the
KMP algorithm in the case of standard PKP on which PERK is based.

7.2.2 KMP algorithm on PKP. In this section we briefly sketch the KMP
algorithm to solve the PKP. Fully fledged descriptions, analysis and estima-
tion scripts are given for example in [KMP19,SBC23,EVZB24]. The algorithm
by Koussa, Macario-Rat and Patarin [KMP19] is a slight variant of previously
known combinatorial techniques [Geo92, BCCG93, PC94, JJ01]. The algorithm
was first proposed for the inhomogeneous version of PKP, where Hπ(x) = y for
a given vector y ∈ Fmq [KMP19]. The algorithm was then recently extended to
the multi-dimensional case [SBC23], i.e. the case where multiple xi and yi are
provided and the the solution is a permutation π, with Hπ(xi) = yi for all i.
12 The definitions vary depending on how the information of msg is leaked to the

adversary.
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Santini, Baldi and Chiaraluce also introduced further improvements to this gen-
eralized KMP algorithm. However, as it only improves for i > 1 pairs (xi,yi),
we do not consider it for the security analysis of PERK, which uses i = 1.

Initially, the matrix H is transformed into semi-systematic form by applying
a change of basis (modelled by the invertible matrix Q)

QH =

(
Im−u H1

0 H2

)
,

where H1 ∈ F(m−u)×(n−m+u)
q ,H2 ∈ Fu×(n−m+u)

q and u is an optimization pa-
rameter of the algorithm. For the inhomogeneous variant, where y ̸= 0, one
maintains the validity of the PKP identity by multiplying the syndrome y by
the same matrix Q

QHπ(x) =

(
Im−u H1

0 H2

)
π(x) =

(
Im−u H1

0 H2

)(
x1

x2

)
= (x1 +H1x2,H2x2)

⊤

= (y1,y2)
⊤ = Qy,

where Qy = (y1,y2) ∈ Fm−uq × Fuq and π(x) = (x1,x2) ∈ Fm−uq × Fuq . The
algorithm now focuses on solving the identity H2x2 = y2. For any found x2

satisfying the identity it is than checked if x1 = y1−H1x2 and x2 together form
a permutation of x.

Candidates for x2 are obtained by a meet-in-the-middle enumeration strat-
egy. Therefore x2 is further split as x2 = (x21,x22), with x21,x22 ∈ Fu×((n−m+u)/2)

q

to obtain the meet-in-the-middle identity

H2(x21,0) = y2 − (0,x22). (2)

Then the algorithm enumerates all candidates for x21 and x22, that is all per-
mutations of any selection of (n−m+u)/2 entries of x. For each such vector the
left (resp. right) side of Equation (2) is stored in a list L1 (resp. L2). In a final
step the algorithm searches for matches between the lists L1 and L2 yielding
the candidates for x2. From there x1 can be computed as x1 = y1 −H1x2. If
(x1,x2) forms a permutation of x this yields the solution π.

The complexity of the algorithm is (up to polynomial factors) linear in the
sizes of the lists L1, L2 and L, where L is the list of matches. The expected sizes
are

|L1| = |L2| =
(

n

(n−m+ u)/2

)(
(n−m+ u)/2

)
! and |L| = |L1 × L2|

qu

7.2.3 Relation between PKP and the Code Equivalence Problem. In
their recent work Santini et al. [SBC23] formalized the equivalence between PKP
and the subcode equivalence problem. Namely, PKP asks to find a permutation
that sends the one dimensional code x into the code with parity check matrix
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H, which defines the problem. For variants of PKP using higher dimensional
codes this can have some implications regarding security, depending on the con-
crete choice of code dimension. However, again, for standard PKP using a 1-
dimensional code x this has no effect on security.

7.2.4 PKP over extension fields. In the context of PERK, we consider PKP
over Fq with q = pr being a prime power. To the best of our knowledge, no algo-
rithms are known that exploit the structure of the extension field Fq. Especially,
there are no known adaptations or enhancements of the KMP algorithm that
leverage this characteristic.

Note that, this observation aligns with the evidence from the closely related
syndrome decoding problem over Fq. The most effective algorithm for this prob-
lem, when q > 2, relies on an enumeration routine that is conceptually similar
to the KMP algorithm. Yet, even in the case of syndrome decoding over exten-
sion fields, no algorithmic improvements have been identified that exploit the
extension field’s structure. This was recently confirmed in [EW25].

7.2.5 Parameter selection. For parameter selection we fix q = 2048. We
then, for any choice of n rely on a standard choice of m. That is, for any choice
of n we choose m minimal such that the expected amount of solutions to a
random instance of the PKP(q,m, n) is smaller than one. Subsequently we use
the CryptographicEstimators library13 [EVZB24], for the concrete complexity
estimation of the KMP algorithm for any set of parameters (q, n,m). Eventually,
for any security level we choose n such that the complexity estimation yields a
comfortable margin to the NIST specified security levels.

Note that in addition to this margin, the estimation of the KMP algorithm
via the CryptographicEstimators is already a lower bound on the algorithm’s
complexity by neglecting some factors. Furthermore the KMP algorithm suffers
from a memory complexity that is equal to its time complexity. Therefore, re-
alistic attacks have to resort to time-memory trade-offs further adding to this
margin. The proposed parameters can therefore be seen as conservative choices
with respect to security.

Overall the detailed procedure leads to the choices of parameters given in
Section 5 whose estimated bit complexity is given in Table 12.

13 https://github.com/Crypto-TII/cryptographic_estimators
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Instance q n m Bit Security

PERK-1 2048 64 27 150

PERK-3 2048 92 43 220

PERK-5 2048 118 59 286

Table 12: Bit security estimates of PERK parameters

8 Advantages and Limitations

We now discuss some advantages and limitations of PERK.

8.1 Advantages

Some advantages of our design are:

+ PERK features very small public key and secret key sizes along with moderate
signature sizes. Therefore, on the combined metric of pk + signature size,
PERK produces sizes of approximately 3.5 kB for NIST security level 1 which
compares well with other signature schemes.

+ Contrarily to many post-quantum schemes, the security of PERK is not based
on a problem relying on cyclic structure or ring structure.

+ Resilience against PKP attacks: A large part of the signature size scales with
the security parameter λ (due to the seed trees and commitments) and not
directly with the PKP parameters. As a consequence, increasing the PKP
parameters has a limited impact on the total size of the signature.

+ PERK performances are constrained by numerous calls to symmetric crypto-
graphic primitives. Any speedup to the implementation of these primitives
directly benefit PERK. In particular, hardware acceleration support for such
primitives improves the performance of the scheme.

8.2 Limitations

In the following, we point out the limitations of PERK.

– While PKP was initially defined over prime fields, PERK relies on PKP de-
fined over Fq where Fq is an extension field of F2. While, no algorithms
exploiting the structure of the extension field are known, this variant has
been less studied than the original long time standing PKP problem.

– While PERK’s performance profile is comparable to other MPCitH-based
constructions, those can not compete with the fastest post-quantum secure
schemes, usually based on structured lattices.
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