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Changelog
Version 2.1 (23/09/2025)
e The design of PERK has been improved and now relies on the modeling

from [BBGK24] along with the VOLEitH framework [BBD'23c]|. As a result,
PERK signature sizes have been significantly reduced.

Version 2.0 (05/02/2025)

e Thibauld Feneuil, Matthieu Rivain and Keita Xagawa have joined the PERK
team.

Version 1.1 (16/10/2023)

e Reduce signature sizes for short parameters set by approximately 5% using
a ranking algorithm for permutation encoding ;

e Improve the implementation (reduced stack-memory usage and bug fixing).
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1 Introduction

PERK is a post-quantum digital signature scheme based on the hardness of
the PERmuted Kernel Problem (PKP) [Sha90]|. The scheme builds on a Zero-
Knowledge Proof of Knowledge (ZK PoK) of a PKP solution computed using
the modeling from [BBGK24| along with the Multi-Party Computation in the
Head (MPCitH) paradigm [IKOS07]. More precisely, PERK relies on the VOLE
in the Head (VOLEitH) framework [BBD"23c|. The ZK PoK is then converted
into a signature scheme using the Fiat-Shamir transform [FS87].

Organization. We present in Section 2 some background and the notations we
will use. Then, Section 3 and Section 4 respectively provide an overview and a
detailed algorithmic description of PERK. Section 5 and Section 6 are dedicated
to the parameters and the performances of PERK. A security analysis of the
scheme is provided in Section 7. Finally, in Section 8, we summarize the main
advantages and limitations of the scheme.



2 Preliminaries

2.1 Notations

Let A\ denote the security parameter. For integers a,b we denote [a, b] the set of
integers ¢ such that a < ¢ < b. We write [n] as a shorthand for [0,n — 1]. We
denote S,, the group of permutations of the set [n]. Let F; denote the finite field
of ¢ elements where ¢ is the power of a prime. If S is a finite set, we denote

by z <% S that  is chosen uniformly at random from S. Similarly, we write

x ﬁ S, if z is sampled pseudo-randomly from the set S, based on the seed 6. We
use z to denote input and denote its length by |z|. Vectors are denoted by bold
lower-case letters and matrices by bold capital letters (e.g., v = (v1,...,v,) € Fy
and M = (mi;)1<i<k,1<j<n € ]F’q””). We denote by ker(M) the right kernel of
the matrix M.

We call a function f : N — R* negligible, if for all ¢ € N there exists a
Ny € N such that f(n) < 1/n° for all n > Ny. We write negl(\) to denote an
arbitrary negligible function. We use poly(X) for function which is polynomially
bounded in A, that is there exists ¢, Ag € N such that poly(\) < A€ for all A > Ag.
We also abbreviate probabilistic polynomial-time as PPT. Let X and Y be two
discrete random variables defined over a finite support D. The statistical distance
between the two distributions is defined as

A(X,Y) = % > IPr[X =d] - Pr[Y = d]|.
deD

We say two ensembles of random variables {Xx},cy, {Ya}y\en are statistically
close if there exists a negligible function negl : N — R™ such that A(X,Y)) <
negl(A) for all A € N. We say two ensembles of random variables {Xa},c g1}
{Yfﬂ}xe{o,l}* are statistically close if there exists a negligible function negl : N —

R* such that A(X,,Y;) < negl(|z|) for all z € {0,1}*.

2.2 Standard cryptographic primitives

Definition 2.1 (Salt based PRG (adapted from [BBD*23b])). Let PRG:
{0,132} x {0,1}* — {0,1}* be a deterministic polynomial-time algorithm. Let A
be a q-query, N-batch adversary. We define an experiment Exptg‘,;_Gij(q, N, ) as
i Figure 1. Let

AdvPRGPRC[q, N, ] ==

1
Pr [outA =1:outy Exptfgné'(;prj(q,N7 )\)] - 2‘,

Then we call PRG as ((q, N, A), (t,€))-secure if for every adversary A running
i time t, its advantage AdvPRGPRE [q, N, A] is at most e. If X is obvious in the
context, we will drop .



Exptprasi (4 N, A)

1 b {0,1}

2: for i € [q] : salt; & {0,1}**

3: for j € [N] :

4: ifb=0:

5: seed; & {0,1}*

6: r;,; = PRG(salt;, seed;)
7 else : 1 <i {0, 1}2

8: b — A ({salti}ie[q], {Ti7j}<7:,j)e[q]><[N]>

9: if b="b:returnl

10: else :return 0

Fig. 1: Multi-challenge security of salt-based PRG

Note that, any ((1, 1, A), (¢, eprg))-secure salt based PRG is also ((g, N, A), (¢, epre))-
secure with eprg < ¢ N - €pre.

Definition 2.2 (Collision Resistance). Let H : {0,1}% — {0,1}% be a
deterministic function. For any adversary making at most q queries to H, we
denote its advantage in finding a collision for H by AdeoIIH[q]. We say that
H is (q, (t,e))-secure if for every adversary A running in time t, its advantage
AdvColl[q] is at most «.

Definition 2.3 (Multi-Target Non-Invertibility). Let Com : {0,1}% —
{0,1}fex be a deterministic function. For a q-query adversary, we define its ad-
vantage as

$ Cout
AdvNI®®™[¢] := Pr | Com(inp) = com, : €OM0; -+, COMg—1 {0,1} .
(¢,inp) < A(comg, ..., com,_1)

We say that Com is (g, (t,€))-secure if for every adversary A running in time t,
its advantage AdvNI“°™[q] is at most e.

Definition 2.4 (One-time PRF). Let F : {0,1}** x {0,1}* — {0,1}3* be
a deterministic polynomial-time algorithm. Let an adversary A, we define its
advantage as

AdvPRFY =

Pr [b _y. b 20,1} rand <2 {0,112 (state, inp) + A() 1 1
=: 5|

ro == F(rand,inp);rq & {0, 13220 «+ A(ry, state)

We say that F is (t,e)-secure if for every adversary A running in time t, its
advantage AdvPRFY is at most .



Definition 2.5 (Joint PRF Security). Let PRG : {0,1}?*x{0,1}* — {0, 1}2
and Com : {0,1}* x {0,1}* — {0,1}2* be deterministic polynomial-time algo-
rithms. Let A be a q-query, N-batch adversary in the experiment from Figure 2.
Let

AdvJPRFPRGComI N 2] =

j 1
Pr [outA =1: outy Exptgggf)éim (@, N, )\)] — 2‘,

Then we call a pair of PRG and Com as ((q, N, ), (t,¢))-secure if for every
adversary A running in time t, its advantage AdvJPRFFRG.Com [g, N, ] is at most
e. If X is obvious in the context, we will drop A.

mt-jprf
Exptprg.com,a (¢ N, A)

1: b+ {0,1}

2: for i€ [q]:salt; & {0,1}**

3: ({inpivj}(i,j)e[q]x[N] 7state) — A ({salti}ie[q])
4: forielq]:

5 for j € [N]:

6: ifb=0:

7 seed; & {0,1}*

8: ri,; = PRG(salt;, seed;)

9: com;,; := Com(inp; ;,seed;)
10 : else :

11: Ti,j & {0, 1}2

12: com; ; & {0,1}**

13 : b/ — A (state, {(Ti,j7Comi,j}(i,j)e[q]X[N])
14: if b=V :return 1

15: else :return 0

Fig. 2: Multi-challenge joint PRF security of commitment and PRG

2.3 Digital signature schemes

Definition 2.6 (Signature Scheme). A signature scheme consists of three
PPT algorithms SIG = (KeyGen, Sign, Verify) which work as follows:
° KeyGen(l)‘): The key generation algorithm takes a security parameter as
input and outputs a pair of keys (pk,sk). The key sk is the private (secret)
signing key and pk is the public key used for verification.



ExptSic. " (V) Exptdic.a™ (V) OSign(msg)

1: (pk,sk) < KeyGen(1%) 1: (pk,sk) < KeyGen(1%) 1: o <« Sign(sk, msg)
2: Q:=10 2: Q:=10 2: Q:=QU{(msg,o)}
3. (msg*,o") AOSign(v)(vk) 3: (msg*,0") « AOSign(-)(vk) 3: returnc

4: dy = Verify(pk, msg”, c™) 4: dy = Verify(pk, msg*,0™)

5: dy=((msg",") ¢ Q) 5: da = ((msg",0") € Q)

6: return di; Ads 6: return di A ds

Fig. 3: EUF-CMA and SUF-CMA games.

Sign(sk, msg): The signing algorithm takes as input a secret signing key sk
and a message msg from some message space (that may depend on pk). It
outputs a signature o < Sign(sk, msg).

Verify(pk, msg, o): The deterministic verification algorithm takes as input
a public key pk, a message msg, and a signature o. It outputs a bit b :=
Verify(pk, msg, o), with b = 1 meaning the signature-message pair is valid
and b =0 meaning it is invalid.

Definition 2.7 (EUF-CMA Security and EUF-NMA Security). A sig-
nature scheme SIG = (KeyGen, Sign, Verify) is existentially unforgeable under
chosen-message attacks (EUF-CMA secure) if, for all PPT adversaries A there
is a negligible function negl(-) such that,

Pr[Exptgrg'Zma()\) = 1] < negl()),
where Exptgf‘gjma()\) is the security game defined in Figure 8. In addition, if we

consider the game where the signing oracle OSign is removed, then the signature
scheme is said to be existentially unforgeable under no-message attacks (EUF-
NMA secure).

Definition 2.8 (SUF-CMA Security). A signature scheme SIG = (KeyGen,
Sign, Verify) is strongly existentially unforgeable under chosen-message attacks
(SUF-CMA secure) if, for all PPT adversaries A there is a negligible function
negl(:) such that,

Pr[Exptd 7"*(\) = 1] < negl()),
where Expt;ré:i{na()\) is the security game defined in Figure 3

2.4 Permuted Kernel Problem

PERK’s security relies on the permuted kernel problem (PKP) introduced by
Shamir in [Sha90].



Definition 2.9 (Permuted Kernel Problem (PKP)). Let (g,m,n) be pos-
itive integers such that m < n, H € F™*", x € Fy and m € S, be a per-
mutation such that H (r[z]) = 0. Given (H,x), the Permuted Kernel Problem
PKP(g,m,n) asks to find @ € S,, such that H (7[x]) = 0.

By convention, we call this problem the PKP problem. Hereafter, we interpret
the PKP problem in matrix form namely the secret permutation 7 is seen as a
permutation matrix P € F;*" such that HPz = 0. In addition, our working
field F, is an extension field of Fs.

The formal definition of the PKP assumption requires an instance distribu-
tion. To shorten the instance, we will employ ExpandMatrixM, a deterministic
function {0,1}* — ]F;"X(n_m).

Definition 2.10 (Advantage against PKP). Let (¢, m,n) be positive inte-
gers such that m < n and q is a power of a prime. For an adversary A, we define
its advantage AdvOW 4 against the PKP problem as follows:

Haeoq <> {0,1}); M = ExpandMatrixM( Hseea);
AdvOW 4 == Pr | H (7[z]) =0: gy — (I, M); z’ & ker(H); 7 S Sn;
T = wil[a:’];fr — A(Hseedv ZB)

We say that the PKP assumption holds if for any polynomial-time adversary A,
its advantage AdvOW 4 is negligible in .



3 Overview of PERK

3.1 VOLE-in-the-Head framework

VOLE correlations. A VOLE (Vector Oblivious Linear Evaluation) correla-
tion of length ¢ over Fyo is defined by random values (u,v) € F5 x FL,, and
(q, A) € F, x Fap, such that

ql:ulA—l—vl iE[O,l,...,E—l].

The VOLE correlation serves as an information theoretically secure commitment
to prover’s random value . The mask v is unknown to the verifier, this provide
the hiding property, while the prover needs to guess A in order to open the
commitment to some u’ # w, which provides the binding property. Moreover,
owing to the linearity of VOLE correlations, these commitments are linearly
homomorphic. Therefore, such VOLE correlations can be used to build efficient
zero-knowledge proofs of knowledge, where the prover can commit to its secret
witness with help of VOLE correlations and convince the verifier by computing
some public function on the witness (and other public values) which can be
verified using only the verifier’s VOLE correlation inputs (g, A).

VOLE-in-the-Head. Following the approach of [BBD"23b, BBD*23¢|, in or-
der to achieve the public verifiability for our zero-knowledge proofs (and sig-
natures) we use the VOLE-in-the-Head (VOLEitH) technique. In this approach
the prover generates the values u,v and commits to these values. The prover
then computes the desired public relation with the help of committed VOLE
correlation inputs (w,v). At this point the verifier can send A to the prover, and
prover can send opening to the commitments to (u,v), from which the verifier
can compute q without learning any extra information. Note that it is impor-
tant that the prover learns the value of A (required to provide openings) only
after it has committed to the VOLE correlation inputs, and to the computations
of the zero-knowledge protocol (so it cannot change these after learning A),
since after the prover knows A, the binding property of the linear homomorphic
commitments does not hold.

In practice the VOLE correlation values are computed from uniform random
strings of length é In order to create a single instance of VOLE correlation
inputs (u,v) € F§ x F%, the prover (signer) essentially needs to perform O(2°)
additions and multiplications. Similarly, after receiving the opening the verifier
also needs perform similar computation to acquire g. The soundness error of the
zero-knowledge proof of knowledge (relying on the binding property of linear
homomorphic commitment based on VOLE correlations) is 277. Therefore, to
achieve the desired security level we need to set p > A, however this means that
the prover and verifier will need to perform infeasible computations in order to
even get started by creating the VOLE correlation inputs. This is mitigated by
creating several parallel instances of VOLE correlations in a smaller field Fo. and
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concatenating them together to produce a single VOLE correlation instance in
exponentially large field For. This allows us to compute the VOLE correlations
required to achieve desired security level efficiently. For each parameter set, we
choose a repetition parameter, 7 € N along with a VOLE field parameter, ; € N
such that p = 7p.

Committing to VOLE correlations. An important step in our signature
scheme is to commit a vector of pseudo-random seeds, and be able to later open
all-but-one of those seeds. Looking ahead these seeds will be used to generate
the aforementionned VOLE correlations. The standard approach to build such
an efficeint commitment scheme is to derive the seeds from a tree of length-
doubling PRGs. Such a construction is called an all-but-one vector commitment
scheme, relying on a GGM tree [GGMB84|, as suggested in [KKW18]. Suppose a
party needs to generate N seeds and then to reveal only N — 1 of those seeds
(without knowing in advance which seed should not be revealed). The principle
is to build a binary tree of depth [log,(IN)]. The root of the tree is labeled with
a master seed 6. The rest of the tree is labeled inductively by using a PRG of
double extension on each parent node and splitting the output on the left and
right children. To reveal all seeds except seed number i for 0 < ¢ < N — 1, the
principle is to reveal the labels on the siblings of the paths from the root of the
tree to leave i. It allows to reconstruct all seeds but seed number i at the cost
of communicating |log, (V)] labels, which is more effective than communicating
N — 1 seeds. Instead of building one GGM-tree for each of the 7 repetitions
of the proof of knowledge, we adopted the approach of using a unified tree, as
explained in [BBM 25|, to save communication costs.

Computing VOLE correlations from seeds. The seeds obtained from the
GGM tree can be used to generate VOLE correlations as follows: Let r; =
PRG(seed;) be (-bit pseudorandom strings for an integer i € [0, N — 1] with
N := 2" as the number of leaves in the GGM tree. The prover computes u, v as

N-1 N—-1
u = E T, v= g RE SR
i=0 i=0

with 4 (and thus v) as an element in Fou . The verifier chooses A € [0, N—1] C Fau
uniformly at random and receives all the seeds seed; for ¢ € [0, N — 1] \ A from
the prover. The verifier can then compute

N-1

q= (A—i)~Ti€F2;L
i=0
We use the same approach as [BBD123b| to compute the vole correlations

from seeds which is detailed in Section 4.4 and algorithm 4.4. In order to achieve
the desired security level, we need to repeat the above procedure 7 times. How-
ever, this results in 7 independent instances of VOLE correlations

ge = ucA, + ve e€0,1,...7 —1]

11



with (u,,v.) € FyxFS,. and (q., A.) € F5. xFau. Let u, € FS be represented as
a vector of length 7 over Fs. Similarly elements in Fa. such A, can be represented
by a vectors of length p over Fy. Also, v, and g, are vectors with elements in
Fo. and therefore can be represented by matrices of dimensions % w over Fo.
We can then write the VOLE correlation equation as

Qe = [66,0u6 (Se,lue T 66,#711"6} + Ve

where (dc,0,0c,1,---,0¢,,—1) is the bit decomposition of A, € Fou. If the prover
can somehow modify these correlations such that all 7 instances use the same
u value (say wup), then the prover combine (concatenate) v, and Q. matrices

to build VOLE correlation values v and q in Fép. Similarly, prover computes
A € Fyp by concatenating all bits {651,»}(6 DO —1]X[0rorospi—1] from individual
A, values. This gives us a desired VOLE correlation

Q=upAdA+v

with (ug,v) € F§ x F, and (Q,A) € F5, x Fy,. The prover achieves this by
sending the correction values ¢, := ug —u, for e € [1,...,7—1]. These ¢, values
can be used by the verifier to adjust its correlation inputs such that all 7 VOLE
correlations in For hold with respect to ug.

Ensuring consistency of VOLE correlations. Note that if any of the correc-
tion values ¢, is inconsistent (i.e. ¢, # ug — u.) then the correctness of VOLE
correlations does not hold and therefore the zero-knowledge proof built using
such VOLE correlations cannot guarantee its correctness either. Therefore, the
verifier must check that c. values are consistent. The verifier can ensure this by
asking the prover compute a random linear universal hash function of uy and
v, and send the hash values (say @, D). The verifier can then compute the same
function on @ and then check if the VOLE correlation Q = @A + @ holds true.
This consistency check was used earlier in [Roy22, BBD23b]. For more details
kindly refer Section 4.4 and algorithm 4.8.

3.2 Proof of Knowledge for PKP

The zero-knowledge proof of knowledge underlying PERK is based on [BBGK24].
Recall that, the prover (signer) wants to prove the knowledge of a secret per-
mutation matrix P € Fy*" such that for some given public matrix H € F**"
(for m < n) and a public vector x € Fy, the equation H Pz = 0 holds true. In
PERK, we achieve this goal in two steps, first the prover aims to convince the
verifier that it knows a permutation matrix. Then it shows that the equation
HP=x = 0 holds true for this permutation matrix. We will therefore first focus
on proving that the prover knows some permutation matrix.

12



Elementary vectors as building blocks. An elementary row vector e; of
length n for 0 < i < (n — 1) is the (n — 1 —4)™ row of an n x n identity ma-
trix. ! Note that, for any n x n permutation matrix its rows are also elementary
vectors e; (but in an arbitrary order). Therefore, as a first step towards proving
knowledge of a specific secret permutation matrix, we can begin by trying to
prove that we know a certain elementary vector. The key observation is that an
elementary vector of length n, can be constructed by taking tensor product of
elementary vectors of smaller size. In particular, PERK uses elementary vectors
of lengths 4 and 2 to prove the knowledge of rows of secret permutation matri-
ces of sizes 64,92, and 118. The prover proves the elementary structure of vector
e = [eg,e1,€9,€3] € IF‘Q1 by showing that the product eg-e; =0 and e3 - ez =0
simultaneously. In case of elementary vector e = [eg, e;] € F3 this is achieved
simply by showing eg - e; = 0. Additionally, the prover should also prove that
eo Der Dex Des =1 (resp. eg @ e; = 1). Proving these constraints simulta-
neously, allows the prover to demonstrate knowledge of elementary vectors, the
prover achieves this by constructing equivalent low degree polynomials which
have leading coefficient equal to 0 when the constraint is satisfied.

Knowledge of permutation and PKP solution. The prover computes the
proof for each row of the secret permutation vector as a tensor product of d
elementary vectors (for d € {3,4}) by constructing equivalent degree-d polyno-
mials with leading coefficient equal to 0 if and only if the corresponding row is
an elementary vector. At this stage, the prover is able to prove to the verifier the
permutation structure of the matrix. The prover then shows that these degree-d
polynomials when seen as entries of n X n matrix P satisfy the PKP equation
HPx = 0, where (H,x) corresponds to the public key of PKP. In order to
prove that all these polynomials have leading coefficients equal to 0, the prover
combines them all by taking a random linear combination of all the polynomials
(where the coefficients of the random linear combination are provided by the
verifier), adds secret masking polynomial of degree d — 1 to the linear combina-
tion and sends it to the verifier. The verifier checks if the received polynomial
has leading coefficient equal to 0 by evaluating it at a random point.

! We assume the indexes start from 0, that is the elementary vector eg denotes the
last that is (n — 1)™ row of the identity matrix.

13



4 Algorithmic Description

4.1 Object representation

Finite fields. Elements of [F, are stored in 16 bit unsigned integers. We also
use finite field arithmetic over Foi1, Fosa, Foios, Foiz2, Foies, Fo26a. These fields
are defined as polynomials over Fy modulo an irreducible polynomial F'.

Fii(7) =14+~ ++"

Foa(v) =14+~4"+2 +94 +%
Fias(7) =147 +92 + 97+
Fiaa(y) =1+~% + 4
Fiog(7) =14+~ +4'8
Fooa(7) = 1+t #4141 44

We use following functions to convert bit-strings into field elements (or positive
numbers) and vice versa:

ToField converts a bit-string into a corresponding field element ;

ToBits converts a field element into a corresponding bit-string ;

BitDec converts a positive number into its binary decomposition ;

NumRec takes a bit-string as the binary decomposition of a positive number
and reconstructs the number.

Algorithm 4.1: ToField(bits, k)

Public information and inputs

Public information: Maps an input bitstring bits € {0, 1}"k, for a positive integer n > 1 into
a field element (or vector of n fields elements) = € F;, .

1 let vx € F,x / The « element of F,y.

2: if bits € {0, 1}*:

3 return z := Y"1 bits[i] - v}

4: elseif bits € {0,1}"*:

5: for i € [n]

6 [i] := S5, bits[ni + j] - 7]

7 endfor

8 return x

9 else :

10 : return L

11: endif

14



Algorithm 4.2: ToBits(z, k, n)

Public information and inputs

Public information: Maps an input field element (or vector of n fields elements) = € F, , for
a positive integer n > 1 into a bitstring bits € {0, 1}"F.

Initialize bits <~ & )/ Empty string.

Initialize bitslice <~ ¢/ Empty string.

for i € [n]

1

2

3

4 Parse x[i] as ®[i] = zo + 17k + -+ + a:k,l'y:_l with zo,z1,...,2k—1 € {0,1}
5: bitslice := wo||z1|| - - - ||zx—1 / bitslice € {0, 1}*

6 bits := bits||bitslice

7: endfor

8

return bits / bits € {0,1}"*.

Integer and bits conversions

Algorithm 4.3: BitDec(i, d)

Public information and inputs Algorithm 4.4: NumRec(d, bitS)

Public information: Decomposes an integer Public information and inputs

4 into bits.

777777777777777777777777777 Public information: Reconstructs an inte-

1 for j € [d] ger i from a bitstring.

2 bj:==¢ mod2 [T~ TToTomm T
1: Parse bits as bits := bg|| - ||bg—1

3: i:=(i—b;)/2 s )
2: return T b - 27

4: endfor 2j=0 b

5 return (bo,b1,...,ba—1).

- w

Vectors and Matrices. Vectors of Fj (respectively Fy") are represented as
arrays of length n (respectively of length m) of F, elements. Matrices H € F{"*"
are represented as two dimensional arrays of I, elements i.e. arrays of length m
of arrays of length n.

Permutations and Witness. We use following auxiliary functions during sign-
ing process to encode positive numbers corresponding to the index of non-zero
entries of the secret permutation matrix, and represent these secret indices as
witness for the proof system.

e EncodeNum-64 encodes a number between 0 to 63 in base-4 notation. This
function is used for NIST Level-I parameter set. Given an input pos € [64],

15



it outputs a unique tuple of three numbers (4,7, k) € [4]3 such that pos =
16k +45 +1i ;

e EncodeNum-128 encodes a number between 0 to 127 using hybrid base-4 and
base-2 notation. This function is used for NIST Level-I1II and NIST Level-
V parameter sets. On input pos € [127], it outputs a unique tuple of four
numbers (¢, J, k,b) € [4]3 x {0,1} such that pos = 64b + 16k +4j + i ;

e EncodeNum is a wrapper function that internally calls either EncodeNum-64
or EncodeNum-128 depending on the security level ;

o LeftShift shifts the bits of an input bit-string to left by a specified amount
given as input.

Algorithm 4.5: EncodeNum-64(pos)

Public information and inputs

Public information: Encodes input number pos € [64] in base-4. order.

Output

Array encPosArray of length 3, encoding the input position pos.

1: Initialize encPosArray <— [null, null, null]

2: k< |B2]
Dp o Lpos—(kue)J
; 1
4: 44 pos— (k*16) — (j*4)
5: encPosArray < [i, j, k]
6 : return encPosArray

Algorithm 4.6: EncodeNum-128(pos)

Public information and inputs

Public information: Encodes input number pos € [128] in hybrid base-4/base-2.

Output

Array encPosArray of length 4, encoding the input position pos.

1: [Initialize encPosArray < [null, null, null, null]
2: b+ |B| / be{o,1}
3: temp < EncodeNum-64 (pos — (b * 64))
// Parse temp as temp = [i, j, k] where 4, j, k € [0, 3]
4 : encPosArray + [i, j, k, b]

5: return encPosArray
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Algorithm 4.7: EncodeNum(pos)

Public information and inputs

Public information: Wrapper function for selecting encoding function for input number pos

based on desired security level.

Output

Array encPosArray encoding the input position pos.

Security Level 1
1: if A =128:
2 8 return EncodeNum-64 (pos)

Security Levels 3 and 5

3: elseif \ € {192,256}:

4: return EncodeNum-128 (pos)
5: else:

6: return L

7: endif

Algorithm 4.8: LeftShift(bits, shift)

Public information and inputs

Public information: Shifts input bitstring bits € {0,1}* to left by shift positions if shift is
smaller than length of bits.

if shift € [len(bits)]:

return bits << shift

1

2

3: else:
4 return L
5

endif

4.2 Sampling functions

The randombytes function provided by the NIST is used to sample uniformly
at random the salt and various seeds (e.g., Hseed, k€fseed, PErMgeed). The PRG
function is instantiated using SHAKE-128 for A = 128 and SHAKE-256 otherwise,
along with domain separators.

Random elements of F, are obtained by sampling log,(¢) = 11 random bits from

the PRG. Random vectors in Fy (respectively matrices in IF;"X") are sampled
uniformly by sampling in order n (respectively m x n) elements in F,.
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ExpandMatrixM(Hseed) — F?X(nfm) : Samples a matrix M € ]F;”X(nfm) uni-
formly at random using the PRG with seed Hgeeq and domain separator dom =
0x00.

ExpandKernelVector(kergeeqd, H) — ker(H) : Samples a vector ' € F} in ker(H)

uniformly at random. Specifically, we derive a basis ki,...,kn—, € Fy for
ker(H) by taking the rows rows of the matrix (M ' |I,,_,,). Then we sample
n — m random scalars ci,...,¢, € IF; using the PRG with seed kerseeq and

domain separator dom = 0x10, and compute the resulting vector in ker(H) as
x' =31 " ¢;-k;. For an adversary, its advantage in distinguishing the output of
ExpandKernelVector from a random kernel vector is denoted by AdvpREPandKemelVector

ExpandPermutation(permgeeq) — S, : Samples permutation 7 of length n uni-

formly at random. Specifically, we first construct a vector v = (vg, - ,vp—1) =
(0,1,--- ,n — 1). Then, we use the PRG with seed permgeq and domain sepa-
rator dom = 0x20 for sampling a random vector e = (eq," - ,e,—1) € (F36)™.

We construct the vector p = (pg, - -+, pn—1), where the high-order and low-order
bits of p; corresponds e; and v;, respectively. Finally, we sort this integer se-
quence in constant time using djbsort [Berl9], and extract the permutation
7w from the lower-order bits p. If there are any duplicate values in the vector
e, we discard it and restart the procedure. For an adversary, its advantage in

distinguishing the output of ExpandPermutation from a random permutation is
denoted by AdVPRExpandPermutation.

4.3 Hash functions and commitments

In the following, we instantiate functions from the SHA3 family, choosing the out-
put length according to the security parameter A: for A\ = 128 we use SHA3-256,
for A = 192 we use SHA3-384, and for A = 256 we use SHA3-512. Throughout, we
denote a binary string as x € {0, 1}*.

Pseudorandom Generators. We make use of two distinct pseudorandom gen-
erators, denoted by PRG; and PRGs. Specifically, PRG; is instantiated from ei-
ther the SHA3 family or Rijndael, while PRG; is instantiated from either SHAKE
or Rijndael.

e PRG;(salt || index || seed) expands a seed into a binary tree according to
the GGM construction, producing outputs of length 2. The length of index
depends on the instantiation: 2 bytes for SHA3 and 4 bytes for AES/Rijndael.
Let salt = (saltg || salty).

PRG; (salt || index || seed) := SHA3-A(salt || index || seed || dom)
PRGj (salt || index || seed) := (high || low)
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Rijndael-256(k = seed, msg = salty @ (0x00 || index || dom)) otherwise.

high — {AES—lQS(k = seed, msg = salty @ (0x00 || index || dom)) if A =128

low — AES-128(k = seed, msg = salty @ (0x01 || index || dom)) if A =128
| Rijndael-256(k = seed, msg = salty @ (0x01 || index || dom)) otherwise.

e PRGy(salt || seed) converts seeds into instances for the Vole protocol, with
output length ¢.

SHAKE-128(salt || seed || dom) if A =128,

PRG It d) :=
2(53 H see ) {SHAKE_256(sa|t || seed || dom) if \e {192, 256}

AES-128(k = seed, msg = salty @ (ctr || z || dom)

PRGy(salt || seed) :=
Rijndael-256(k = seed, msg = salty @ (ctr || z || dom)

where ctr is a counter byte that starts from 0x00 and gets updated for every
block produced, and z = (0x00 || 0x00 || 0x00 || 0x00).

In both cases, domain separation is enforced via an explicit tag dom € 0x05, 0x06,
ensuring independence between PRG; and PRGs. For the security level parameter

A = 192, we extend salty to 256 bits by appending 0x00s, and we truncate the
output of Rijndael-256 to 192 bits.

Hash functions.
e Hy:{0,1}* — {0,1}?* defined as
Hi(x) := SHA3-A(z || dom), where dom = 0x01.
e Hl:{0,1}* — {0,1}°**® defined as

H () SHAKE-128(x || dom) if A =128, dom = 0x21,
T) =
2 SHAKE-256(z || dom) if A € {192,256}, dom = 0x21.

e H2:{0,1}* — {0,1}** defined as
H2(z) := SHA3-A(z || dom), where dom = 0x22.
e H3:{0,1}* — {0, 1}70r0FT1m1+w defined as

H3 () SHAKE-128(x || dom) if A =128, dom = 0x23,
xXr) .=
2 SHAKE-256(z || dom) if A € {192,256}, dom = 0x23.
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e Hs:{0,1}* — {0,1}3* defined as

Ha () SHAKE-128(x || dom) if A =128, dom = 0x03,
xTr) =
’ SHAKE-256(z || dom) if \ € {192,256}, dom = 0x03.

e Hy:{0,1}* — {0,1}P(entn+m) defined as

Ha(2) SHAKE-128(x || dom) if A = 128, dom = 0x04,
x) =
! SHAKE-256(x || dom) if A € {192,256}, dom = 0x04.

Commitments. For the commitments, we consider the two following approaches.

Commitment Com;. This scheme is instantiated from either the SHA3 family
or Rijndael. Let 7 denote the subtree and n the index of the leaf in the GGM
tree array.

e SHA3 instantiation: we absorb 7 as a single byte and n as two bytes.
e Rijndael instantiation: we concatenate 7 and n into a 32-bit string (4 bytes).

We denote this combined value as index. Let salt = (saltg || salty).

Option 1: SHA3 based commitment.
Comy (salt || index || seed) := SHA3-A(salt || index || seed || dom), where dom = 0x07.
Option 2: Rijndael-based commitment.

Com; (salt || index || seed) := (high || low), where

hich AES-128(k = seed, msg = salty @ (0x00 || index || dom)) if A =128
1 =
g Rijndael-256(k = seed, msg = salty @ (0x00 || index || dom)) otherwise.

o AES-128(k = seed, msg = salty @ (0x01 || index || dom)) if A =128
W =
Rijndael-256(k = seed, msg = salty @ (0x01 || index || dom)) otherwise.

For the security level parameter A = 192, we extend salty to 256 bits by append-
ing 0x00s, and we truncate the output of Rijndael-256 to 192 bits. In all three
cases, we take dom = 0x07.

Commitment Coms. This scheme is derived from the SHA3 family

Comy(x) := SHA3-A(x || dom), where dom = 0x08.

4.4 VOLE-in-the-Head functions

The VOLE correlations form one of the foundational building block of our
scheme. In this section, we describe how to perform basic operations on VOLE
correlations and how to construct them from the batch all-but-one vector com-
mitments construction. We also explain how, within the scheme, the prover com-
mits to these VOLE correlations and checks their consistency.
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VOLE correlations. Let ¢ = uA @ v be a VOLE correlation with (u,v) €
Fy x Fou, and (q,4A) € Fau x Fou.? Such a generic VOLE correlation corre-
sponds to a linear (degree-1) commitment to u denoted as f,(X) = uX + v,
with the evaluation ¢ = f,(A) given to the verifier. From here onward in this

document, we denote degree-1 commitment to a bit u (or a bit-string u € F%) by
[u] (or [u] respectively). This notion can be extended to polynomial-based com-
mitments with higher degree polynomials. We write [s] (@) to denote a degree-d
commitment to a secret value s € Fy where the prover holds f4(X) = Z?:o a; X"
with coefficients a; € Fou and ag equal to s lifted to For while the verifier holds

qs = fg(A) S ]Fgu .

It is possible to compute arbitrary linear combinations of a given set of input
VOLE correlations, due to their linear homomorphic property. Algorithm 4.9
LinearCombination from [BBD23b| given below shows how VOLE correlations
for linear functions of secret values uq,...,u, € Fy can be computed. In fact,
it is also possible to combine ¥ VOLE correlations ¢; = u; A @ v;,1 € [k] with
(uj,v;) € Fo x Fou and (q;, A) € Fou X Fou for i € [k], to obtain a single VOLE
correlation ¢ = uA @ v with (u,v) € For x Fou and (g;, A) € Fau X Fau for
an arbitrary Foxr C Fou. To achieve this, the prover computes u = Zf:_ol w; X?
where {1, X,..., X*1} is the power-basis of Fox over F,. Prover also computes
vas v = Zi:ol v; X*. While the verifier can compute q as q = Zf;ol g Al
(and A remains unchanged). We can perform homomorphic operations on the
degree-d-commitments locally by the prover and the verifier with the help of the
Algorithm 4.10 Add and Algorithm 4.11 Multiply given below. In the following,
let di > dy without loss of generality, also let d = dy + da.

Given a VOLE correlation ¢ = uA + v for a random u € Fy, it is possible
to embed arbitrary value w € Fy. To do so, the prover computes ¢t = w & v and
sends t to the verifier. Since v is uniform random and unknown to the verifier, ¢
does not leak any information about w. The verifier then computes ¢, = ¢+tA.
Note that the prover and verifier now possess their respective parts for the VOLE
correlation ¢, = wA+v. After embedding the witness w, one can use the VOLE
correlations to establish PoK of the witness for relations which can be modeled
as polynomial functions of the commitment to the witness.

2 Here we consider £ = 1 for readability and easy to read notation. Therefore, u and
A can be seen as scalars represented by 1 and pu-bits respectively. Whereas, v, q are
vectors of length p over Fao. All of the discussion in Section 4.4 naturally extends to
VOLE correlations with ¢ > 1, where we view A as a scalar represented by p-bits,
u is a vector of length ? over Fy, and V, Q are seen as 7 x 4 matrices over [Fa.
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Algorithm 4.9: LinearCombination(co, c1, .. . , ¢n, ([u]))iefi,n))

Prover's computation: P.LinearCombination(co, c1, - - ., cn, ([[ui]])ie[l,n])
Prover's input: Coefficients of linear combination cg,c1,...,¢, € Fa, VOLE correlation
inputs (u1,v1),..., (Un,vn) € (F2 X Fop)™.

Prover's output: VOLE correlations (u, v) for the linear combination of secret inputs.

Computes u = co + > ;-4 ciju; and v == > " | ¢;v;.

Verifier's computation: V.LinearCombination(co, c1,...,¢n, A, q1,...,qn)

Verifier's input: Coefficients of linear combination cg,c1,...,¢, € F2, VOLE correlation
inputs A, q1,...qn € ]F;;rl

Verifier's output: VOLE correlation ¢ for linear combination of secret inputs.

Computes q := coA + > 1" | ¢ciq;.

Algorithm 4.10: Add ([s1](%), [s2](42))

Public information:

Degrees of input VOLE correlations di, ds.

Prover's computation: P.Add ([[sll](dl), [[sz]](d2))

Prover’s input: VOLE correlations represented as polynomials fs; (X) and fs, (X).

Prover's output: VOLE correlation [s](?1) for addition of secret inputs.

Computes [s](%1) = f,(X) == fap (X) + fsp (X)X ~92 where s = 51 + s2.

Verifier's computation: V.Add (A, gs, , ¢s5)

Verifier's input: A, gs; = fs; (4Q), and gs, = fs,(4)
Verifier's output: VOLE correlation gs for addition of secret inputs.

Computes gs == gs; + qS2Ad1_d2.
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Algorithm 4.11: Multiply ([s1]®), [s2] (%))

Public information:

Degrees of input VOLE correlations di, da.

Prover’s computation: P.Multiply([[sl]](dl), [[sz]](dQ))

Prover’s input: VOLE correlations represented as polynomials fs; (X) and fs, (X).

Prover’s output: VOLE correlation [[s]](dl) for multiplication of secret inputs.

Computes [[s]](d) = fs(X) = fs; (X)fso(X) where s = s155.

Verifier's computation: V.Multiply (qs1 s qsz)

Verifier's input: qs; = fs; (4) and gs, = fs,(4)
Verifier's output: VOLE correlation gs for multiplication of secret inputs.

Computes gs = ¢s; Gs, -

Committing to VOLE correlations. Recall that in order to achieve the
desired security level (soundness), the atomic zero-knowledge protocol based on
VOLE correlations should be repeated 7 times. This means that the prover needs
to generate 7 GGM trees instances (or a forest of 7 GGM trees). Let N, be num-
ber of leaves (or seeds to be committed to) in each of such 7 trees for e € [7] and
let N := Zz;é N.. Recently authors of [BBM 25| showed how the communica-
tion cost of such commitments can be further reduced by using batch all-but-one
vector commitment (BAVC) schemes. The idea is to generate a single big GGM
tree with NV leaves instead of 7 individual trees per instance with N, leaves each.
Note that in both cases (either with a forest of 7 smaller trees or with single
unified tree) the prover needs to hide a total of 7 leaves. Intuitively, opening all-
but-7 leaves of the unified tree is more efficient than opening all-but-one leaves
of 7 smaller trees, if the leaves to be opened in the big tree are relatively close to
each other (or share some ancestor node in the tree). To achieve this, following
the authors of [BBM*25] we interleave the leaves of the 7 instances. That is,
the first 7 leaves of the big tree correspond to the first entry of the individual 7
vector commitments, the next 7 leaves correspond to the second entries, and so
on. We also use a fixed threshold value Typen to ensure that the revealed path is
not too long (thus avoiding long signature sizes). The opening algorithm aborts
if the number of nodes exceeds Typen. This results in rejection sampling dur-
ing the opening, which reduces the entropy of the challenge space. Fortunately,
in [BBM*25] the authors showed that security is actually unaffected: since each
rejection sampling step results in the prover computing a hash function, which
can be considered as a proof of work done during each signing operation. We
refer the interested readers to [BBM 25| for further details.
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The batch BAVC consists of the following algorithms.

e Algorithm 4.1 called as VC.Commit generates a vector commitment using a
master seed mseed and a salt value salt as inputs with the help of length-
doubling salt based PRG PRG;. It outputs the leaves of the tree as seeds
{seede’i}ﬂ N> & commitment heom to all the seeds and decommitment infor-
mation decom which consists of commitments {come,i}ﬂ y toindividual seeds
and all intermediate nodes required to construct the unified GGM tree.

e Algorithm 4.2 VC.Open takes the decommitment information decom and the
index set 2" of size 7 corresponding to the indexes of the hidden leaves. It
outputs a partial decommitment pdecom which can be used to recompute
all-but-7 seeds in the GGM tree, along with 7 commitments {comeyi*}T’T to
the hidden seeds.

e Algorithm 4.3 VC.Reconstruct on inputs the index set i* of size 7 (same as
in VC.Open), pdecom, and salt value salt outputs all-but-7 seeds (hidden by
the indexes in %) by reconstructing the GGM tree, and also outputs the
commitment heom to all the seeds.

In the following, we assume that Ny =... =N, _; > N, =... = N,_; for
some 7y and define N as N := Z:;é N.. We define 9 as

. i-T+e if i < N
wey=30 " o (1)
o - T+ (i —Np)-10+e otherwise

We also use {seed;} , = (seedo,o,seedo 1, . . ., seed(r_1),(n, ,—1)) to denote
an ordered tuple of N seeds where e € [r] and i € [N]. Similarly, we use
{com. i} N = (como,o,comOJ, . ,com(T_1)7(NT71_1)) to denote an ordered tu-
ple of N commitments where e € [7] and i € [Nc]. We also use {com -}, =
(comoyi*[o],comlﬁi*[l], ceey Com(f—1),i*[7_1]) to denote an ordered tuple of 7 com-
mitments where e € [7], and ¢* € [Ng] X [N1] X -+ x [N;_1] is an ordered list of
7 indexes corresponding to hidden leaves.
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Algorithm 4.1: VC.Commit(mseed, salt)

Public information and inputs

Public information: A number of iterations 7, a number of parties N = ZT_& Ne.

Prover’s input: A master seed mseed € {0,1}* and a salt € {0,1}?*

Output

N
N seeds {seedc,i} 5 € ({07 1}*) , a commitment heom € {0,1}?* and a decommitment

auxilary variable decom.

1: nodes[0] := mseed

2: forie [N —1]:

3: (nodes[27 + 1], nodes[2¢ + 2]) := PRG; (salt, nodes[i] :: 2X)
4: endfor

5: foree€|[7]:

6: for i € [Ne]:

(@ seed ; := nodes[N — 1 + (e, 1)]

8: com,,; := Com (salt, seedc ; :: 2\)

9: endfor
10: endfor
11: heom = Comsy (salt, (emto0, . - . ,Cmt(r—1),(NT,1—1)) 28 2/\)
12: return ({seede,i}ﬂ,,l\,7 hcom, decom := (nodes, {Come,i}.,-,N))
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Algorithm 4.2: VC.Open(decom, 2*)

Public information and inputs

Public information: A number of iterations 7, a number of parties N = ZZ;& N, a rejection

parameter Topen

Prover’s input: A decommitment auxilary variable decom := (nodes, {com. ;} ) and " €
[No] x [N1] X -+ X [Ny_1] is an ordered list of 7 indexes corresponding to hidden leaves.
Output

A sibling path pdecom and unopened commitments {com, ;= }T -
// Selecting hidden leaves from interleaved tree
1: hidden : = {N — 1+ ¢(e,i"[e]) : e € [7]}
2: revealed :== {N —1,...,2N — 2}\hidden
3: for i from N — 2 downto O :

/ Adding parent node to revealed if both children nodes are in revealed.

4: if (2i + 1) € revealed and (27 + 2) € revealed :
5: revealed := (revealed\{2i + 1, 2i + 2}) U {i}
6 : endfor

7 : if len(revealed) > Typen :

8: return L

9: pdecom =0

10: fori€ [2N —1]:

11: if ¢ € revealed :
12 : pdecom := (pdecom || nodes][i])
13: endfor

14 : return (pdecom, {com. ;=} )
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Algorithm 4.3: VC.Reconstruct (’i*, pdecom, {comc -} __, salt)

Public information and inputs

Public information: A number of iterations 7, a number of parties N = ZZ:& Ne.

Verifier's input: An ordered list i* € [Ng] X [N1] X --- X [N._1] of 7 indexes corresponding

to hidden leaves, a sibling path pdecom and unopened commitments {com, ;= }T -

Output

A commitment heom € {0,1}?*, and {seedec,i}, v = (seedo,0,seedo,1, - . ., seed(r_1),(N—1))
to denote an ordered tuple of N seeds where e € [r] and ¢ € [N.]. Note that the 7
seeds corresponding to the hidden leaves denoted by an ordered tuple {seed. ;* }_,_ L=
(seedoyi*[o],seedl)i*[l], C.. 7seed(771),i*[771]) are set to L. ’

/| Selecting hidden leaves from interleaved tree
1: hidden :={N — 1+ (e, i"[e]) : e € [7]}
2: revealed := {N —1,...,2N — 2}\hidden
3: for ¢ from N — 2 downto O :

/ Adding parent node to revealed if both children nodes are in revealed.

4: if (2¢ 4+ 1) € revealed and (27 + 2) € revealed :
5: revealed := (revealed\{2¢ + 1,27 4+ 2}) U {3}
6: endfor

// Check if pdecom is well formed by checking that number of nodes
// in revealed matches with pdecom and is < Typen.
7 : if len(revealed) # len(pdecom) or len(revealed) > Topen :
8: return L
9: endif
10 : nodes[0], ..., nodes[2N — 2] :=0,...,0
11: forie [N —1]:

12: if i € revealed :

13: (nodes|i], pdecom) := pdecom

14 : if nodes[i] # 0 :

15 : nodes[2: + 1], nodes[2i + 2] := PRG; (salt, nodes[i] :: 2X)
16 :  endfor

17: fore€ [7]:

18 : for i € [Ne] :

19 : if 1 #4%[e] :

20 : seedc ; := nodes[N — 1 + ¢ (e, )]
21 : com,,; := Comy (salt, seedc ; :: 2\)
22 else :

23 7 seede ; = L

24 : COMe,j 1= COMg 3+ []

25 : endfor

26 : endfor

27 :  hcom = Comgy (salt, (emto0, . - - ’Cmt("_gffN‘rfl_l)) 23 2/\)

28 : return (hcom, {seedec i} )




Computing VOLE from seed. The N seeds committed via the vector com-
mitments are then converted to VOLE correlations using the algorithms specified
below. Note that we use the exact same algorithm Algorithm 4.4 ConvertToV-
OLE as |Roy22, BBD*23b| for this conversion which uses divide-and-conquer
approach to compute the VOLE correlations iteratively. The only difference is
sometimes we lift the elements from Fox to Fou to ensure that the finite field
arithmetic between objects is compatible.

The signing algorithm PERK.Sign uses the outputs of vector commitment
and ConvertToVOLE algorithms to commit to 7 instances of VOLE correlations.
This is achieved by Algorithm 4.5 VOLECommit which creates 7 instances of
VOLE correlations by running ConvertToVOLE 7 times. It then also computes
the correction values ¢, for e € [1,...,7 — 1] and outputs the VOLE signers
correlation inputs u, V', correction vales ¢, for e € [1,...,7—1], and commitment
and decommitment information from vector commitment.

The challenge decoding algorithm Algorithm 4.6 ChallDec takes an input
challenge string ch of length log(N) where N is the number of leaves in the GGM
tree, and outputs an index set ¢* indicating the indexes of the hidden leaves. ¢*
is computed by parsing 7 chunks of input ch and converting them to an integer
€ [N,] for e € [r]. ChallDec is used by both signer to create opening information
for the verifier and by the verifier to reconstruct the VOLE correlation inputs
from the GGM tree.

Algorithm 4.7 VOLEReconstruct is used by the verifier to compute its VOLE
correlation inputs @Q and A. The values of A is computed from the indexes of 7*
obtained by running the ChallDec procedure. And @Q is computed by reconstruct-
ing the committed seeds from the GGM tree with the help of VC.Reconstruct.
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Algorithm 4.4: ConvertToVOLE(Ne*, (seede*,i)ie[N . ,salt, p i é)

Public information and inputs

Inputs: A number of parties Nox = 2%, a tuple of N« seeds (seede*,i)ig[zv ! € ({o, l}X)Ne*
@ ex
for some fixed e* € [r], a salt € {0,1}?*, and £ € N denoting the number of VOLE

correlations output by the function. Recall that £ := fyoLeHashMask + £ + £CzMask-

Output

Outputs £ VOLE correlations (ug, vy) € Fa X Fou for k € [£], All these VOLE correlations
can be seen as linear (degree-1) polynomials, [ug] = fu, (X) = ux X + vg € Fop [X].

1: kK :=logy(Nex)

2 if seedp =1 :

3: 70,0 == of

4: else:

5 70,0 ‘= PRG2 (salt,seede*,o 88 é)
6: forie[l,N—1]:

T 70,i ‘= PRGa(salt, seed .« ; :: 2)
8 : endfor

9: po—-- =y g =0°

10: for j € [K] :

11 : forie[gfl]:

12: v = v D rj2ita

i3 3 Ti+1,i = Tj,2i D Ty 2i+1

14 endfor

15: endfor

16 : u:=T7Tx0

17 if p > ke

18 : for i € [u — K]:

19:: Weps = 0F
20 : endfor
21 : return (u,vo,...,Vg—1,Vx, .., Vu_1)
22: else:
23: return (u,vg,...,vx—1) / This will happen only if yu = k.
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Algorithm 4.5: VOLECommit (mseed, salt :: f)

Public information and inputs

Public information: A number of iterations 7, a number of parties N = ZZ;& Ne, ke =

logy (Ne) € {ro, 1}, p = poTg + p17{
Prover's input: A master seed mseed € {0,1}* and a salt € {0,1}2*, a length £ € N

Output

Prover’s output: A commitment hcom € {0, 1}2’\, a decommitment auxilary variable decom,
VOLE corrections (e1,...,¢-—1), VOLE correlation secrets u € ]Fg, VOLE correlation

v-vectors V € ng‘)

isg ({seedeyi}T ~'» Prcom, decom = (nodes, {come,i}T’N)> := VC.Commit(mseed, salt)

2: foreec]|r]:

3: (We,Ve,0,- -, Ve,pe—1) ‘= ConvertToVOLE(N,, (seede,i)ie[Ne],salt, Ve % é)
4: Ve i= [Ve,0 "+ Ve, pp—1] eFﬁ:X“e

5: endfor

6: Vi=[Vo-- Vi_1] € FLxP

T: w:i=1ug

8: foreec[l,7—1]:

9: Ce = uU D Ue
10: endfor
11: return (hcom,decom,cy,...,cr—1,u, V).

Algorithm 4.6: ChallDec(ch)

Public information and inputs

Public information: A number of iterations 7, a number of parties N = T 1 Ne, ke =
log, (Ne)
Inputs: A challenge ch € {0,1}7070+71%1
Output
An ordered index set 4% := (ig,...,%5_;) € [No] X [N1] X -+ X [Ny _1] of size 7.
1 lo:=20
2 for e € [7]:
3 i := NumRec(ke, ch[lo : 1o + ke — 1])
4 : 1lo := 10 + Ke
5 endfor
6: return i* := (if,...,i _;)
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Algorithm 4.7: VOLEReconstruct (i*, pdecom, {comc ;- }__, saIt)

Public information and inputs

Public information: A number of iterations 7, a number of parties N = szé Ne.
Verifier's input: An ordered list i* € [Ng] X [N1] X --- X [N._1] of 7 indexes corresponding
to hidden leaves, a sibling path pdecom, unopened commitments {com, ;= }_r - and a salt €

{0, 1}2*.

Output

A commitment hem € {0,1}2)‘, and verifier’s VOLE correlation inputs Q' =
Q- Q] €F*”

1: out:= VC.Reconstruct (i*, pdecom, {com, ;= }7— 7_,salt)

2: ifout=1:
3: return L
4: else:
5: Parse out as out := (hcom, {seedeyi}T,N).
6: for e € [7]
7: A = 1"[e]
8: for ¢ € [N.]: seediji :=seedc ;pA, / permute seed. ; by using A,
9: (W, Ge,05 -+ ge,pe—1) = ConvertToVOLE(N, (seed, ;)ie[n,]:salt, e :: 0)
100 QL= [ge0 e pe—1] € FP¥He
11: endfor
12 : return (hcom,Qg,..A,Q;il).

Ensuring VOLE consistency. It is crucial for the verifier to ensure that the
correction values ¢, sent by the prover are consistent with the committed VOLE
correlation input ug. The verifier ensures this by asking the prover to compute a
random linear universal hash. In this section, we explain this process in detail.?
We begin by defining family of linear universal hash functions, since it will be
used to conduct the consistency checks.

Definition 4.1 (Linear universal hash functions). A family of linear hash
Junctions is a family of matrices H C Fg*™. The family is e-almost universal, if

3 This technique is independent of the underlying PoK scheme or signature scheme
since this generically helps the verifier to check the consistency of the VOLE correla-
tions committed by the prover. Therefore, in PERK we use the exact same techniques
and algorithm for these checks as those implemented in FAEST [BBD"23b]. Due
to this reason we simply (re)state important definitions, propositions, and lemmas
which are essentially same as those presented in [BBD'23b].
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for any x € F \ {0},
Pr[Hz =0 H < M| <=

The family is e-almost uniform, if for any = € Fy \ {0} and for any v € Fy,
Pr[Ha::v : H&H} <e.

In order to preserve the zero-knowledge property when the hash outputs are
shared with the verifier, the hashes used in PERK must also satisfy the hiding
property given below.

Definition 4.2. A matriz H € Fy* "™ is F-hiding if for v[0,h — 1] < F"
the distribution of Hv is independent from vlh,n + h —1]. A hash family H C
F;X(h'm) is Ty -hiding if every H € H is T} -hiding.

N

Proposition 4.1. Let H C F;*" be e-almost uniform hash family. Let H

FZX(THL) be the family {[I, H]| : H € H}, where I, is the r X r identity matriz.
Then, (a) H' is e-almost universal, and (b) H' is Fy-hiding.

Proof. Let x = [io] be non-zero, with zo € F, and =, € . If H’ € H' then,
1

H'xz = 0 implies that —xy = Hx;. Since xy and x; cannot be equal to zero
simultaneously (because @ is non-zero), this implies that @, # 0. Therefore from
g-almost uniform property of H, we can conclude that H' is e-almost universal.
The hiding property of H' holds because when the first r elements (x() of the
input are chosen uniformly at random then they perfectly mask the rest of the
output component Ha;. a

Standard constructions of linear universal hash families. Following [BBDT23b]
we also use the matrix hash family and polynomial-based hash family as building
blocks of our VOLE consistency checks [CW79,BJKS94]. The matrix hash family
H = F*" is ¢~ "-almost uniform. In polynomial-based hash, the input x € Fy
is seen as the coefficients of a polynomial with degree < n — 1. Sampling a hash
function is implemented by evaluating such a polynomial at a uniform random
point in F,. Since the polynomial has at most n — 1 roots, the polynomial hash

family is ”T_l—almost universal. If the random point is chosen from a set S with

cardinality |S|, then the polynomial hash family is %—almost universal.

Composition and truncation of hashes. We also recall the properties of composi-
tion and truncation of hashes originally proved by the authors of [Sti92, Roy22,
BBD™23b]. These properties will be useful in proving that the prover can suc-
cessfully bypass the consistency check for VOLE correlations with extremely low
probability.
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Proposition 4.2. Let H and H' be two independent € and €’-almost universal

H] :HEH,H’G’H’}

hash families respectively. Then the concatenation {[ i

is ee -almost universal.
Proof. This holds true because of the independence of H and H’. ad

Proposition 4.3. Let H C Fglxn be e-almost universal and H' C ]FZXT/ be &'-
almost uniform. Then the product {H'H : H € H,H' € H'} is (¢ + &’)-almost
uniform.

Proof. Let ® € F'\ {0}. Then Pr[z’ # 0 : ' = Hx] > 1—¢ since H is e-almost
universal. For @’ # 0, Pr[H'az' # v : v € Fg} > 1—¢" as H' is ¢’-almost uniform.
Therefore Pr[H'Hx # v] > (1 —¢)(1 —¢’) > 1 — ¢ — &/, which implies that the
product is (¢ 4 &’)-almost uniform. O

Proposition 4.4. Let 6 € N and H C Fi*" be e-almost uniform hash family.
Then, the truncated family {Ho,—s—1: H € H}, where Hy,_s_1 denotes the
first (r — 8) rows of H, is eq°-almost uniform.

Proof. For each H € H, let H = [go} where Hy € IFEIT_‘S)X" and Hy € Fo*™.
1

Let x € Fy be a non-zero vector, and y = [ZO] € F. If H & H, then
1

Pr[Hx = y] < . We can then apply conditional probability to obtain,

PriHr=y|<¢

Pr[Hoxg =yo NHyzy =y1] < ¢

PI‘[H()QIO = yo] -PI‘[H1{B1 =Y ‘Howo = yo] S g
]

. PI‘[Hl.’Bl =Y |H0:I}0 = yO]il

where the final inequality comes from fixing a y; € Fg, that maximizes p =
Pr[H,x, =y, | Hyxo = yo|, which implies p is at least ¢~°. O

VOLE universal hash. In order to verify the consistency of VOLE correlation
inputs in F5, we need a hash family that is linear over Fy. Also recall that,

¢ = lvoLEHashMask + £ + Lczmask, Where fyolLEHashMask == A + B, and B = 16 is
a parameter chosen for security. ¢ To compute the hash, we start by mapping

the seed seed into (rg,r1,72,73,$,t) € ]FgA x Faes. The input x € F4 is split into
* Similar to [BBD"23b] PERK actually calls VOLEHash on inputs represented as % p

matrix, which is translated into computing the hash on each column separately, with
the same seed.
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(o, x1), where x; € FgMQM“k, and then x; is parsed twice, first as a vector g
of Fyx elements, and then as a vector g of Faes elements. > Then compute,

=t T P b 4G € Fou

Viewing h; as an element of Fox (by padding zeros), the hash is then com-

puted in Fyx as,
hal _ |mo 71| [ho
hg o T2 T3 h1

Finally we take the first fyoLgHashmask (i-€. A + B) bits of the concatenation
of the field elements hy and hs, and XOR it with xy. We argue security of
this construction below (same as [BBDT23b]). Like [BBD23b|, we also aim for
g 1= 2~ tvorerasimask — 2=A=B with B = 16, in order to compensate for (;) security
loss shown by [BBD*23¢].

Lemma 4.1. VOLEHash is an e,-almost universal hash family in ]Fg"OLE“"’S“M“kXZ,
for e, = 27 tvoLEHashmask (1 + 23_50), if ¢ < 2'3. Furthermore, VOLEHash is IF?ZCZM“"-
hiding.

Proof. We show &,-almost uniform property of the hash that outputs the first
OyoLEHashMask (1.€. A + B) bits of (hg, hs), that is without adding xq. By Propo-
sition 4.1, this implies the hiding and &,-almost universal property of the final
hash. The first part of the hash which computes hg, h1, is a concatenation of
two polynomial hashes, over either Fox or Foea. These are e-almost universal
with € = ITd\’ where d is the degree of the polynomial and F is the field, and we

have d < 6‘44. Both these hashes are Fo-linear, as the binary field multiplication
is bilinear over Fo. Thus, applying Proposition 4.2 we get that the concatena-
tion of the two polynomial hashes is then g-almost universal with g9 < 2{—576.
Therefore, for / < 213 we have g < 272750,

The second part of the hash starts with a 2 x 2 matrix hash, which is
almost uniform. After the truncation, the result is e1-almost uniform for e; =
2~ fvotenashvask due to the Proposition 4.4. The final combined hash is a product
of these two parts, so from Proposition 4.3 and summing the probabilities, we
get that for all / < 213 the hash is e,-almost uniform for €, = g9 + &1 <
9 —4VOLEHashMask (1 + 23*50) . O

272)\_

Following algorithms help prove consistency of the VOLE correlations.
 In order to allow for better parsing in PERK we swap the order of ao and x;

from [BBD'23b]. That is o serves as a mask in PERK, where as [BBD"23b] uses
1 as a mask.
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Algorithm 4.8: VOLEHash(seed,w o eVOLEHashMask)

Public information and inputs

Inputs: A seed, represented as a tuple (rg, r1, 72,73, s,t) € {0, 1}5A+64, and a vector to be

hashed = € {0, 1}2, represented as a pair (g, @) € {0, 1}*VOLEHashMask x {0, 1}¢F¢CZMask

Output

A VOLE hash h € {0, 1}*VOLEHashMask
1: r;:= ToField(r;, \) for i € [4]
2: s:= ToField(s, \)
3: t:= ToField(t, 64)
4: 0 = A[(L+ Lezmask) /N
5: @ = 21]/0¢ ~(Hiczmask) (pad to multiple of \)
6: ¢ := ToField(xq, \)
7: 7y := ToField(x1, 64)
81 ho = ST s AT g )
95 hy = UL S0 i
10:  hf := ToField(ToBits(h1)[|0*~%%, X)
11: (h2, h3) = (roho + r1h}, r2ho + r3h})
12: h := (ToBits(ha)|| ToBits(h3)[0..voLEHashMask — 1]) @ xo
13: return h
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4.5 Proof of Knowledge functions

In this section, we present the various algorithms used by the prover and by the
verifier to prove (respectively verify) the knowledge of the secret permutation
which serves as solution to the PKP instance defined by the public key. This is
achieved with help of VOLE correlations created as described in Section 4.4, and
then using such VOLE correlations to compute linear functions over polynomials
to ascertain that different constraints related to the elementary vector structure,
and the satisfiability of the PKP solution are fulfilled by these polynomials.

The prover begins by proving the knowledge of elementary vectors of length
4 or 2, and then generates polynomials corresponding to the rows of the secret
permutation matrix by computing the tensor products of these smaller elemen-
tary vectors. In order to prove the elementary structure of the length 4 (or length
2) vector, the prover needs to show that following constraints are obeyed by the
underlying vector:

1. For a vector e := [eq, €1, €2, €3] € F5 the product eg-e; = 0 and ey -e3 = 0 si-
multaneously. In case of elementary vector e = [eg, e;] € F3 this is achieved
simply by showing ey - e; = 0.

2. Additionally, the prover should also prove that eg ®e; @ es Bes = 1 (respec-
tively eg ® e; = 1).

Note that proving constraint 2, actually allows for optimization leading to
saving of a single bit per elementary vector. The prover simply sends 3 bits (or
1 bit) and the remaining bit of the elementary is computed by the verifier as:
es = 1@ ey @ e; @ e (respectively e; := 1 @ eg). The algorithms algorithm 4.9
CompWit and algorithm 4.10 ExpWit describe this process, these algorithms are
used by the prover and the verifier respectively.
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-
Witness Compression and Expansion
Algorithm 4.10: ExpWit(w)
- . - /
A|gOI‘Ithm 4.9: ComPW't(w ) Public information and inputs
Public information and inputs Public information: Expand compressed in-
. . . !
Public information: Compress input wit- i P?Evflfrieissi’lf’f?t?jvjt?ﬁsf:ui; 777777
ness w’ into shorter witness w by drop-
. . 1: TInitialize w’ = ¢
ping bits.
777777777777777777777777777 2: if len(w) = 9:
1: Initialize w =& / Parse w as
2: i len(w’) = 12: /- w = wooll - [lwi ] [|wz,2.
/ Parse w’ as w’ = w{||w]||w) / For i € [3] and j € [3].
// where, 3: for i € [3]:
/ w; = “’;,0 |wz,',1||“’;,2sz,',3- 4 : w ge=1
B3 for i € [3]: 5: for j € [3]:
4: for j € [3]: 6 : Qj.:wij
5: Wi,j = Wy ; 7 s w4 = w3 D ws,j
6: endfor 8: w' = w’||w] ;
(& endfor 9: endfor
8: assert (len(w) = 9) 10 : w = w'||w] 4
9: return w 11: endfor
10 : elseif len(w’) = 14: 12 : assert (len(w’) = 12)
/ Parse w’ as IS return w’
J w' = w6||w£ Hwél‘wé 14 : elseif len(w) = 10:
/. with wé defined as in line 2 / Parse w as
/ for ¢ € [3] and / w = ®||ws,o, and
o ’ ’
/- ws = ws g|lws ;. /W = wooll - [lwisl| - ||wa,2.
11 : w := CompWit (wg||w?||wj) // For i € [3] and j € [3].
— ’
12 w = wl|lwg o 15 : w’ = ExpWit(w)
13: assert (len(w) = 10) 16 : w' = w'||ws,o||(1 & ws,o0)
14 : return w 17 : assert (len(w’) = 14)
15: else : 18 : return w’
16 : return L. 19: else:
17 :  endif 20 : return 1.
21 : endif
L 7

Prover. In this section we present all the algorithms that will be used by the
prover (signer) to produce the proof of knowledge. The prover begins by encod-
ing each row of the secret permutation matrix into smaller elementary vectors.
Algorithms EncPosArrayToWitness and PosToWitness together take an input po-
sition corresponding to the non-zero element in a row of permutation matrix,
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and output its corresponding unique witness encoded as blocks of elementary
vectors. Let e; be an elementary vector of length 4, generated by shifting the
bit-string ¢0001° to left by ¢ positions. Therefore, eg :== ‘0001’ e; = ‘0010,
ey = ‘0100, and e3 := ‘1000°. Also, let e} be an elementary vector of length
2, generated by shifting the bit-string ‘01’ to left by either b positions for
b € {0,1}. Therefore, e} := ‘01’ and e} := “10°.

Algorithm 4.11 EncPosArrayToWitness takes the unique encoded position ar-
ray [, j, k] corresponding to some position pos € [64] generated from EncodeNum-
64, and outputs its corresponding unique witness w’ = ej||e;||e; € F32.

Algorithm 4.12 PosToWitness on an input position pos, first computes the
unique encoded position array encPosArray corresponding to pos by calling En-
codeNum. If encPosArray contains exactly 3 elements then, PosToWitness outputs
corresponding unique witness for pos as w’ := ej||e;j||e; € F3? by subsequently
calling EncPosArray ToWitness. Otherwise if encPosArray := [i, j, k, b] contains ex-
actly 4 elements then, it computes ey||e;||e; as described above. It then outputs
corresponding unique witness for pos as w’ == e} ||ex||e;j||e; € F3t.

Next, the prover creates the VOLE correlations that will be used in proof
generation, by embedding the witness (now represented as elementary vectors).
This is achieved by Algorithm 4.13 EmbedWitnessBlock which takes the witness
generated by PosToWitness as input and embeds it block-by-block inside ran-
dom VOLE correlation also given as inputs. The output of this algorithm are
the VOLE correlations [3}] corresponding to the elementary blocks of witness.
Algorithm 4.14 EmbedWitness aggregates the VOLE correlations embedding the
witness from individual elementary vectors of lengths 4 and 2, and outputs VOLE
correlations [3'] corresponding to the aggregation of 3 elementary vectors of
lengths 4 (and in case of L3 and L5 parameters, another elementary vector of
length 2).

Once the prover possesses the VOLE correlations (linear polynomials) corre-
sponding to the elementary vector entries, it then computes the degree-d VOLE
correlations (degree-d polynomials) corresponding to each individual row of the
secret permutation matrix with help of Algorithm 4.16 TensorProductToElemen-
taryVector, which internally calls Algorithm 4.15 TensorProduct to compute the
tensor product between two blocks. At this stage the prover has computed n
polynomials per row each of degree d, [[z]](d) = ([[zoﬂ(d), ce [[zn,l]](d)) which
are the VOLE correlations corresponding to the rows of the secret permutation
matrix, viewed as an elementary vector of length n. The Algorithm 4.17 VOLE-
ElementaryVector produces the VOLE correlations ﬂzﬂ(d) along with intermediate
values [3'], and masked witness t which will be sent to the verifier.

After obtaining the VOLE correlations for each of the n rows by running
Algorithm 4.17 VOLE-ElementaryVector n times, the prover further computes

extra n degree-d polynomials, [[CoICheckj]](d) which ensure that each column of
secret matrix adds upto exactly 1. This is described in Algorithm 4.18 VOLE-
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Permutation. The check that columns add upto exactly 1 along with the ele-
mentary structure of the individual rows is sufficient to prove the permutation
structure of the secret matrix.

The prover proves the elementary structure by computing the polynomials
which have leading coefficient equal to 0 if and only if constraint 1 mentioned
above (eg-e; = 0 and e - e3 = 0) is satisfied using Algorithm 4.19 Check-
ElementaryBlock, and Algorithm 4.20 Check-ElementaryVector.

So far we have seen that, the prover has generated many degree-d polyno-
mials, which should all have leading coefficients equal to 0. In order to verify,
this the prover needs to send these polynomials to the verifier which can then
evaluate them at a random point of its choice and check if the all the leading
coefficients are equal to zero as expected. However, sending so many degree-d
polynomials is inefficient, the prover can instead send a single degree-d polyno-
mial by taking a random linear combination of all the polynomials, where the
coefficients of the random linear combination are chosen by the verifier.

Note that, in order to convince the verifier the prover still needs to send
a degree-d polynomial to the verifier whose leading coefficient is supposed to
be zero. However, since all these polynomials are computed by taking tensor
products and other linear functions of secret witness (embedded in the VOLE
correlations), each coefficient of this polynomial obtained by the prover contains
information about the secret. As the prover only needs to reveal that leading
coefficient is zero, it should add a masking polynomial to blind the remaining
coefficients. The Algorithm 4.21 CheckZero achieves this and outputs a masked
polynomial with leading coefficient equal to zero which can be used by the veri-
fier.

Finally, the Algorithm 4.22 Check-PKP puts all of the checks for checking the
elementary structure of rows (blocks), column sums equaling to 1, and satisfia-
bility of PKP equation together by computing degree-d polynomials with zero
as leading coefficients if and only if these constraints are satisfied. These polyno-
mials are then merged together into a single polynomial by computing (verifier
dictated) random linear combination, which is then masked with the help of
Algorithm 4.21 CheckZero. As a result, the prover should send the masked wit-
ness t obtained from Algorithm 4.18 VOLE-Permutation along with the masked
polynomial proof output by Algorithm 4.22 Check-PKP to the verifier.
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Algorithm 4.11: EncPosArrayToWitness(encPosArray)

Public information and inputs

Public information: Given encoded position array encPosArray of length 3 with all input
elements in [4], outputs its corresponding unique witness w’ € {0,1}12 with hamming
weight 3.
1: Initialize w’' :=¢ / Empty string
2 : if len(encPosArray) = 3 :

/ Parse encPosArray as encPosArray := [i, j, k] with 4, j, k € [4], else output error.

3 for index € [3]:

4 W e = LeftShift (€00017, encPosArray|index])
5 w' = w'[|[w] e

6: endfor

7 assert (len(w’) = 12)

8 return w’

9 else :
10 : return L
11: endif
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Algorithm 4.12: PosToWitness(pos)

Public information and inputs

Public information: Given secret input pos outputs its corresponding unique witness w’.

1: encPosArray := EncodeNum (pos)

Security Level 1
2: if len(encPosArray) = 3 :

3: w’ := EncPosArrayToWitness (encPosArray)

4 return w’

Security Levels 3 and 5

5: elseif len(encPosArray) = 4 :
6: w’ := EncPosArray ToWitness (encPosArray[0 : 2])
73 w} = LeftShift (017, encPosArray|[3])
8: w’ = w'||w)
9: assert (len(w’) = 14)
10 : return w’
11: else:
12 return L
13: endif
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Algorithm 4.13: P.EmbedWitnessBlock (w}, ([ux])kefs))

Public information and inputs

Public information: Length of the witness block = 4.

Prover's input: i*®

secret witness block w} = w] o||w] , ||w] ,||w} 5 € F3, 3 VOLE correla-
tions [ug] for random (uy,vi) € Fo X Fop represented as polynomials Fuy, (X) = up X + vg

for k € [3].

Output

Prover's output: VOLE correlations [3.] = ([[ﬁ;,o]]; 18i 11, 8 1, [[6273]])7 where [8; ;] €
Fo X Fap for j € [4].

Construct VOLE correlations with witness

1: / Parse w] as w; = wj o||w] ; ||w] 5||w] 5.

2: for j € [3]:

3: ﬂ;i (X) = wé’jX + v; / ﬂ;i are polynomials with coefficients in Fqp.
4: endfor

5: B 3(X) =wj3X +vo+v1+0v2

6: 8= (8ol 15,11, [/]. I8 31)
7: return [B]]
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Algorithm 4.14: P.EmbedWitness(w’, ([ux])keta.))

Public information and inputs

Public information: Length of the expanded secret witness |w’| := 240y — 6.
Prover's input: Secret witness w' & F;2€'°W76), liow VOLE correlations [ug] for random

(ug,vi) € Fo X Fap represented as polynomials Fuy, (X) = up X + vg, for k € [lrow].

Output

Prover’s output: (240w — 6) VOLE correlations [3'] with elements in Fo X Fap.

Construct VOLE correlations with witness

1: if len(w’) = 12: /| Security level 1
J Parse w' as w' = whl|w}][w}, where, w] = w]_gllw] ,||w] ollw] 5.
2F for i € [3]:
Bs [8;] := P.EmbedWitnessBlock (w?, ([ur])ke(3i,3i+2])
4: endfor
5:  [81:= (I8l [B11. [B2])
6 : return [3']
7: elseif len(w’) = 14: // Security levels 3 and 5
/ Parse w’ as w’ := wy||w]||wh||w's 0||w’s,1, where, w] are as above (line 1)
8:  (I851.1811.185]) == P.EmbedWitness (w||w} [wj, ([ucDre o))
9: Bé’O(X) = w’3,0X + vg
10 : B51(X) = w'31X + vg

11 (841 = (185,00 185.1)
12: [8']:= ([8], 811, [B5], [B5])

13: return [3']
14: else:

15 : return L
16 :  endif
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Algorithm 4.15: P.TensorProduct([[,Bg]](d"), [[ﬁ;]](dj), num)

Public information and inputs

Public information: Sizes n; and n; of two blocks of VOLE correlations [[ﬁ;]](di) and [[ﬂ;]](dj)
respectively. Each element of [[ﬁ;]](di) (resp. [[ﬁ;]](dj)) is represented as degree d; (resp. d;)
polynomial with coefficients in Fap.

Prover's input: (n; + n;) secret polynomials

181,017, - 18 (ny =y ], 185,019, - 185, —1y 1.

Output
Prover's output: num® polynomials, [[g]]wi"'dj> = ([[CO]](di+dj)7 A [[gnum*_l]](di+dj)) each
of degree d; + d; which can be seen as VOLE correlations, where num* := min(n;n;, num).

Computing tensor product

1: counter :=0
2: for index; € [n;]:
SE for index; € [n;]:
4: if counter € [num]:
5: [Geomier] %957 i= P-Muttiply (18] ingex; 17, 184 inger; 17
6 : counter := counter + 1
7: else :
8: break
9: endfor
10: endfor
s [t = (o]t .., [Ceouner—1] 37 5)

12: return [¢](%*%)
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Algorithm 4.16: P.TensorProductToElementaryVector([3'], n)

Public information and inputs

Public information: Length of the secret elementary vector n, degree d := [log,(n)].

Prover’s input: (20w — 6) secret degree-1 (linear) polynomials represented as [3'].

Output

Prover's output: n polynomials, [z](? = ([z0]‘?, ..., [zn_1]‘?) each of degree d which

can be seen as VOLE correlations corresponding to the secret elementary vector.

Compute elementary vector using tensor product
1: if len([B']) =12: / Security level 1
/ Parse [B'] as [B'] = ([85], 1811, [B2])-
/ Generating 16 degree-2 VOLE correlations in Fa X Fap.

2f: [€o0,1]® := P.TensorProduct ([B,], [B1]. n)
/ Generating 64 degree-3 VOLE correlations in Fa X Fap.

3: [z]® := P.TensorProduct (HCOJ]](Q), 1851, n)
dlg return [z]®
5: elseif len([8']) = 14: ) Security levels 3 and 5

[ Parse [8'] as [8'] = ([85]. [81], [85], [B5])-
// Generating 16 degree-2 VOLE correlations in Fa X Fap.

6 : [€o0,1]® := P.TensorProduct ([B5], [B;], n)
// Generating 64 degree-3 VOLE correlations in Fgy X Fap.
& [€o0,1,2]®® := P.TensorProduct ([[Co,l]](z), 851, n)
8: // Generating n degree-4 VOLE correlations in Fa X Fap.
9: [2]Y := P.TensorProduct ([[4'0,1,2]}(3), 851, n)
10 : return [z]®
11: else:
12 : return L
13: endif
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Algorithm 4.17: P.VOLE-ElementaryVector (pos, ([ux])kej,e.])

Public information and inputs

Public information: Length of the secret elementary vector n, degree d := [log, n], size of
the compressed secret witness 4oy := d + 6.
Prover's input: Secret position pos € [n], 4w VOLE correlations [uy] for random (ug,vg) €

Fo x Fap represented as polynomials fy, (X) = urX + vk for k € [£row].

Output

Prover’s output: Masked compressed secret t € ]Fém‘”, n polynomials [[z]](d) =
([[z():[](d)7 AU [[zn_l]](d)) each of degree d which can be seen as VOLE correlations cor-
responding to the secret elementary vector, along with (24,0, — 6) secret degree-1 (linear)
polynomials represented as [3'].

Compute masked secret

1: aw’ := PosToWitness(pos)
2: w = CompWit(w’)
3: t=wdu

Construct VOLE correlations with witness

4: [B'] = P.EmbedWitness (w’, ([ur]) ke [tron])

Compute elementary vector using tensor product

5: [[z]](d) := P.TensorProductToElementaryVector ([[,Bl]]v ")
6: /) Note that [2]D = ([20]P, ..., [zn_1]P).
7: return (t7 [[,3’]]7 [[z]](d)>
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Algorithm 4.18: P.VOLE-Permutation (P, ([t k])ie(n] ke (ton])

Public information and inputs

Public information: Matrix dimension n of the secret permutation matrix, degree d :=
[log, n], size of the compressed secret witness roy = d + 6.

Prover's input: Secret permutation matrix P represented as n positions (posg, ..., posy—1),
n - 4w VOLE correlations [u; ] for random (u; k,v; k) € F2 X Fop represented as polyno-
mials f“z‘,k(X) = u; , X + v, for (i, k) € [n] X [lron].

Output

Prover's output: Masked compressed secret t € ]Fg, where £ := n - £ioy. Also, n? polynomials
219 = ([20,0]'Y, ..., [[Z(n—l),(n—l)]](d)) each of degree d which can be seen as VOLE
correlations corresponding to the individual entries of the secret permutation matrix P.
Along with n(24, — 6) secret degree-1 (linear) polynomials represented as [B], and n
polynomials [ColCheck](¥)) := ([ColChecko](¥, . .., [ColCheck, _1](?) each of degree d which
can be seen as VOLE correlations corresponding to the sums of the individual columns of
the secret permutation matrix P.

Compute P row-wise as n elementary vectors

1: forié€ [n]:
2: (ti, [B:], [2:]P) = P.VOLE-ElementaryVector (pos;, ([%i,k]) ketron])
3: endfor

Compute P columns check

4: for j € [n]:

5:  [ColSum;]® = St [2,,1(P

6: [ColCheck; ¥ := [ColSum; (¥ — x4
7: endfor

8: t:=(to, " ,tn—1)

9: [B] = ([Bo]:- -, [Bn-1])

10: [2]@ = ([20]“, . .., [2n-1]‘Y)

11: [ColCheck]® := ([ColChecko] ¥, ..., [ColCheck, _1]®)
12: return (¢, [8], [2]?, [ColCheck](¥)
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Algorithm 4.19: P.Check-ElementaryBlock([3}])

Public information and inputs

Public information: Size n’ € {2, 4}of a secret block of VOLE correlations [3;].
Prover’s input: A block of secret VOLE correlations [3;], where each element of [3]] is

represented as degree-1 (linear) polynomial with coefficients in Fop.

Output

Prover's output: "7/ quadratic polynomials, [e;]® = ([[62,0,1]](2)7 [[eéa,s]}(z)) (or [[e;,oyl]](z))

which can be seen as VOLE correlations.

1: if len([B]]) = 4:
/ Parse [8]] as 181 = (15;0); 18,11, 18 21, [8/.51)-
20 [€}021? = P.Muttiply (18] 0], [5].])
3 [ef,5]® = P.Mutiply (L8] o], [8/,s])
40 [e1? = (Ie,011?, [¢},2,517)
5:  return [e}]®
6: elseif len([B]]) = 2:
/ Parse [8]] as [8;1 = (I8!,0l, 15;.11)-

i [ef 01 = P.Muttiply (18701, [8] 1)

8: return [[82,0,1]](2)
9: else:

10 : return L

11: endif
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Algorithm 4.20: P.Check-ElementaryVector([3'])

Public information and inputs

Public information: Length of the secret elementary vector n, degree d := [log,(n)], frow ==
d+ 6.

Prover’s input: (20w — 6) secret degree-1 (linear) polynomials represented as [3'].

Output

Prover's output: (d + 3) degree-d polynomials, [[e']]<d> which can be seen as VOLE correla-

tions.

1: if len([B']) =12: ) Security level 1
[ Parse [8] as [8'] = ([85], [81], [B5])-

2 for i € [3]:

3 ﬂeé]]u) := P.Check-ElementaryBlock ([3;])
4: [e1® = X - [e/]®

5 endfor

6: 11 = ([e6]®, [e1]®), [e4]®)

return [e¢’]®

8: elseif len([B']) = 14: ) Security levels 3 and 5
[ Parse [8'] as [8'] = ([85]. [81] [85], [B5])-
9: ([[ef)]](g), [ef1®, [[e’2]](3)) := P.Check-ElementaryVector ([33], [B1], [85])
10 : for i € [3]:
15 e =X - [
12: endfor
13: ﬂeg,o,ﬂ](g) := P.Check-ElementaryBlock ([35])
14: [[eé,o,l]](4> =X*. [[eg,OJ]](?)
15: 19 = ([e6] @, 151, [e2] ), [e5 0,,1“)
16 : return [e’]®
17: else :
18 : return L
19: endif
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Algorithm 4.21: P.CheckZero([w] (@) (Twi,k]) 6,0y €[d=1]x[o])

Public information and inputs

Public information: Degree of input VOLE correlation [w](? (seen as polynomial) d.
Prover's input: Degree-d VOLE correlation [w](®, (d — 1)p random VOLE correlation rep-
resented as fu, , (X) = ui kX + vi, K, where (u; i, vi k) € F2 X Fap for (i,k) € [d—1] x [p].

Output

Prover’s output: Polynomial [a]. Note that for an honest prover, the leading coefficient
(coefficient of X ¥ term will be equal to 0) and therefore [[a] will consists of only d coefficients

for terms X° for i € [d].

// Generating VOLE correlations in Fap X Fap

1: forie[d—1]:

20 w= 0wt/ {75}2;; is the power basis of Fap with coefficients in Fp.
vj = 2015 vi,kVp
Ful (X) =u,X +v, J (u},v))inFap X Fap.

endfor

Fmas(X) = 32555 fur (X) - X

[a] = fu (X) + fmask(X)

return [a]

(o I e
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Algorithm 4.22:
P.Check—PKP(P, pk, ([[ui,k]])(i,k)e[n]X[z,ow], ([[Ui’,k’]])(i’,k’)e[dfl]><[p]7 seed)

Public information

Public information: Matrix dimension n of the secret permutation matrix, degree d :=
[log, n], size of the compressed secret witness £ron = d + 6.

Prover's input: Secret permutation matrix P represented as m positions (poso, ..., posy—1),
public key pk = (H, ), n - 4oy VOLE correlations [u; ] for random (u; x, v k) € Fa X Fop
represented as polynomials f“i,k(X) = uj kX + vy, for (i,k) € [n] X [bow], (d — 1)p
VOLE correlations [u;s /] for random w;s s, v;s 3 € Fo X Fop represented as f“i/,k’ (X) =

s g0 X + v g for (i, k") € [d — 1] x [p], seed € {0, IPER,

Output

Prover's output: Degree-d polynomial [a] as a proof to show that P is a solution to the PKP
instance defined by pk.

Compute P in matrix form

1: (¢, [8], [2]‘?, [ColCheck] (D) := P.VOLE-Permutation (P, ([wi,x]) (i, k) e [n] x [tron] )
/ Parse [ColCheck](D as (fo(X), f1(X),..., fn_1(X))

Check elementary vectors

2: for i€ [n]

3: [ElemVecCheck;] (¥ := P.Check-ElementaryVector ([3;])
/ Each [ElemVecCheck;](®) contains 6 degree-d polynomials if A = 128,
/ and 7 degree-d polynomials if A € {192, 256}.

4: endfor

5: [ElemVecCheck](? := ([[EIemVecChecko]](d>, o, [[EIemVecCheckn,l]](d))

/ Parse [ElemVecCheck](? as (fn(X), frt1(X), ..., fentn—1(X)),
/ where, ¢ =6 if A =128, and ¢ = 7 if X\ € {192, 256}.

Compute z’ = Pz
6: for i€ [n]
d n—
(RN AR Dl K81 R
8: endfor

Compute y = Hz'
9: for i€ [m]
10: [l = fipensn(X) = S50 has - 2519
11: endfor

Merge polynomials and run CheckZero

12: o« :=Hy(seed:: p- (cn +n+m)) / o should be parsed as € F;Z+"+m
130 f(X) =2 ey f5(X)
14 : [a] := P.CheckZero(f(X), ([[uilvk/]])“/yk/)e[d,l]X[p])

15: proof := [a] 51

16 : return proof




Verifier. In this section we present all the algorithms that will be used by
the verifier to verify that the prover has knowledge of the secret permutation
which serves as a solution to the PKP instance corresponding to the public key.
As expected in VOLE-in-the-Head (or MPC-in-the-Head) type PoK, the veri-
fier’s algorithm bear a close resemblance to those used by the prover. In the
case of PERK, the main difference is that while prover’s algorithms explained
in Section 4.5 take polynomials as inputs and manipulate them, the verifier’s
algorithms described in this section perform analogous manipulations on evalua-
tions of corresponding polynomials. The verifier possesses the VOLE correlation
inputs g and A, and it also receives the masked (compressed) witness ¢ and
masked polynomial [a] from the prover.

The first step the verifier performs is to update the VOLE correlation inputs
q with the help of the masked witness ¢, to ensure that they satisfy the VOLE
correlation with respect to witness w (instead of w). This is achieved by Al-
gorithm 4.23 EmbedMaskedWitnessBlock. The output of this algorithm are the
VOLE correlations q,’e{ corresponding to the elementary blocks of witness. Simi-
lar to the prover’s casé, the Algorithm 4.24 EmbedMaskedWitness aggregates the
VOLE correlations corresponding to the individual elementary vectors of lengths
4 and 2, and outputs VOLE correlations qb, corresponding to the aggregation of
3 elementary vectors of lengths 4 (and in case of L3 and L5 parameters, another
elementary vector of length 2). Once the verifier possesses the VOLE correlation
inputs (qé,) corresponding to the elementary vector entries, it then computes
VOLE correlations g, corresponding to each individual row of the secret per-
mutation matrix with help of Algorithm 4.26 TensorProductToElementaryVector,
which internally calls Algorithm 4.25 TensorProduct to compute the tensor prod-
uct between two blocks. The Algorithm 4.27 VOLE-ElementaryVector produces
the VOLE correlations qb, along with q,.

After obtaining the VOLE correlations for each of the n rows by running
Algorithm 4.27 VOLE-ElementaryVector n times, the verifier proceeds to com-
pute the extra n VOLE correlation values, gcoicheck Which ensure that each col-
umn of secret matrix adds upto exactly 1. This is described in Algorithm 4.28
VOLE-Permutation. The verifier checks the elementary structure by computing
the values g/, using Algorithm 4.29 Check-ElementaryBlock, and Algorithm 4.30
Check-ElementaryVector.

In order to check that the leading coefficient of the masked polynomial [a] is
zero, the verifier first checks the degree of the polynomial is equal to d—1, it then
evaluates the masking polynomial using its inputs g, A and then finally checks
if the evaluation of the polynomial [a] sent by the prover at point A matches
the addition of the g value obtained from the computations checking constraints
related to the PKP problem and the evaluation of masking polynomial. The
Algorithm 4.31 CheckZero achieves this and outputs 1 when all the values match
and outputs 0 otherwise indicating the failure to verify the prover’s claim.
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Finally, as in the prover’s case, the Algorithm 4.32 Check-PKP puts all of
the checks for checking the elementary structure of rows (blocks), column sums
equaling to 1, and satisfiability of PKP equation together by evaluating degree-
d polynomials at A. These evaluations are then merged together into a single
value by computing (verifier dictated) random linear combination, which is then
checked with the help of Algorithm 4.31 CheckZero.

Algorithm 4.23: V.EmbedMaskedWitnessBlock (A, t/, (qx)ke3))

Public information and inputs

Public information: Length of the masked witness block = 4.
Verifier's input: VOLE correlation challenge A € Fap, i*" block ¢} := t] o[t} , ||t} ,||t} 5 € F3
of the masked witness t’, 3 VOLE correlation inputs (qo, g1, g2) with each of them in Fyp.

Output

Construct VOLE correlations with witness

1: / Parsetast =t |[t],[|t] 5]|t] 5-
2: for j € [3]:

3. q;‘]g,j = t,i,j‘A""‘Ij

4: endfor

5 4;473 =t g Ataqot+ar+ a2

6: q//:= q// q'/ q'/ q'/
B; Bio’ "Pia’ Pia’ B3

7. return q;__]{
i
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Algorithm 4.24: V.EmbedMaskedWitness(A, ', q)

Public information and inputs

Public information: Length of the compressed masked witness £,on, and length of the masked
witness [t'| == 2 - £ion — 6.
Verifier's input: VOLE correlation challenge A € Fyp, the masked witness t’, £, VOLE

correlation inputs q = (qo, - - . , @¢,o—1) With each of them in Fap.

Output

Verifier's output: q”:‘,, with elements in Fop.

Construct VOLE correlations with witness

1: if len(t’) = 12: // Security level 1
J Parse t’ as t’ = tg||t] ||y, where, t] = t] o[|t] 1 ||t] 5] 5-
23 for i € [3]:
3. qp, = V.EmbedMaskedWitnessBlock (A, ], q[3i:3i+2])
k3
4: endfor
. ’ — / ’ ’
5 g = (‘1567 qﬂi ) 45/2>
6: return q%,
7: elseif len(t') = 14: // Security levels 3 and 5
/ Parse t’ as t' = tg||t]||t5]]t's,0||t 3,1, where, t; are as above (line 1)
8: (:;;56, q’B,1 , q;sé> := V.EmbedMaskedWitness (A, £} [t ||t5, q[0 : 8])
9: Gp =ilao A+
10: gy, =ta1c At
. / — ’ ’
Mo e = (qﬁé,o’qﬁé,1>
. / — ’ ’ ’ ’
12 qg = (q567q317q5é7q5é>
13 : return q%,
14: else:
15: return L
16 :  endif
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Algorithm 4.25: V.TensorProduct (qk,_ Ay num)
{ i

Public information and inputs

Public information: Sizes n; and n; of the two blocks of verifier’s VOLE correlation inputs

q;a{ and q}_],. respectively. Each element of q;a{ (resp. q":i,v) is in Fop.
i J K J

L 1’ . . . R !’ — 7 ’ ’ —
Verifier's input: (n; + nj;) values qﬁ; = (qB;t,o’ s ,qB;’(ni_1)> and qﬂ; =
q; q;
’ e / .
B5,0° 7 B (ny—1)
Output
Verifier's output: g¢ = (qco7 ey qcnum*_l) is a block of num™* values in Fyp, where num* =

min(n;n;, num).

Computing tensor product

1: counter := 0
2: for index; € [n;]:
3: for index; € [n;]:
4 : if counter € [num]:
5 DCcounter = q%;,indexj ’ q,ﬁg,indexi
6: counter := counter + 1
7 else :
8: break
9: endfor
10: endfor
11: q¢ = (qCO""’anum*71>

12: return g¢
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Algorithm 4.26: V.TensorProductToElementaryVector (qb, , num)

Public information and inputs

Public information: Length of the input vector num € [128]. Lengths of the blocks \qé{\ =4
K
for i € [3], and |qg, | =2
3

Verifier's input: VOLE correlation input q;a/ with elements in Fop.

Output

Verifier's output: g, a block of values in Fap.

Compute elementary vector using tensor product

1: if len(gg ) =12: / Security level 1

/ ’_ ’ ’ /
/ Parse Qg as qg = (q%, qﬂi , 45/2)-

2: 4¢o , = V.TensorProduct (q/ﬁ, 7q;a, , num>
) o’ "P1
33 g~ = V.TensorProduct (q% a6 q’ﬁ, , num)
, 2
4 : return g

5: elseif Ien(q'ﬁ,) =14: / Security levels 3 and 5

/ Parse qg as qp = (qgé,qgi,qgé,qgé).

. — ’ ’
6 : q¢o = V.TensorProduct <qﬁ6, qB,l s num)
73 q¢q .o = V.TensorProduct (qco 17q’ﬁ, s num)
oily ) 2
8: q- = V.TensorProduct (q<0 1 27q'ﬁ, ,num>
] 3

9: return g,
10: else :
11 : return |
12: endif
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Algorithm 4.27: V.VOLE-ElementaryVector(A, t, q)

Public information and inputs

Public information: Length of the elementary vector m, length of the compressed masked
witness [t] := Lrow.
Verifier's input: VOLE correlation challenge A € Fyp, the compressed masked witness ¢, £roy

VOLE correlation inputs q := (qo, - - - ; @¢,o—1) With each of them in Fyp.

Output

Verifier's output: Tuple of (2 - ¢oy — 6) VOLE correlation values corresponding to the
shares B’ held by the prover, along with another tuple of n VOLE correlation values
qz = (on 9@l pooo an_1> corresponding to the secret elementary vector of length n held
by the prover. All VOLE correlation values output are in Fop.
Compute masked secret
1: t' := ExpWit(t)
2 qE_J, := V.EmbedMaskedWitness (A, t’, q)

Compute elementary vector using tensor product

3: gz = V.TensorProductToElementaryVector (q’B, s n)

4: return (ql’a,,qz)
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Algorithm 4.28: V.VOLE-Permutation(A4, ¢, q)

Public information and inputs

Public information: Matrix dimension n of the secret permutation matrix, length of the
compressed masked witness |t| := £. Note that £ = nl.,.

Verifier's input: VOLE correlation challenge A € Fyp, the compressed masked witness t :=
(to,t1,...,tn_1), where each t; € ]Fg"""’7 ¢ VOLE correlation inputs q := (qo, ..., qn—1)

with each g; consists of 44, values in Fop.

Output

Verifier's output: Tuple of VOLE correlation values corresponding to the shares 8 held by
the prover, tuple of n VOLE correlation values g, := (qu, Qzys--- qz”71) corresponding
to the secret elementary vector of length n held by the prover, along with tuple of n VOLE
correlation values gcolcheck = (QCoICheckonCoICheckl yeees QColcr\eckn,l) corresponding to (sum
of column entries - 1) for each column of the secret permutation matrix held by the prover.
All VOLE correlation values output are in Fyp.

Compute P row-wise as n_elementary vectors

1: forie[n]:
2: (ap;>q=;) == V.VOLE-ElementaryVector(A, t;, q;)
3: endfor

Compute P columns check

4: for j € [n]:

5 gcoisum; = Db Gs,

6: qColCheck; = qColSum; — Al

7: endfor

8: g = <Qﬁ07qﬂ17""qﬁn—l)

9: gz = (ngqulv--w(Izn,l)
10: qgcolcheck = (QCOICheckO > ColChecky s+ + - QCOICheckn_l)

11: return (gg, gz, gcColCheck)
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Algorithm 4.29: V.Check-ElementaryBlock (qk,_)

Public information and inputs

Public information: Length of the elementary vector block to be checked € {2,4}.
Verifier's input: A tuple of VOLE correlation inputs ql’a,_ with same size as the elementary

i
vector block to be checked, with each element of qlﬁ/- in Fap.
i

Output

Verifier's output: VOLE correlation values q;, (which can be a single element or a tuple) to
&

help verify the elementary vector structure the secret vector held by the prover.

1: if len(gy) = 4:

’ ro ’ ’ ’ ’
/ Parse dg; as @y = (qﬂé,o’qﬂé,l’qB::,z’qB;,s)

’ ’ ’

: q.r =dgr " dgr

2k €4,0,1 Bio Pina
’ ’ ’

: q.r =dgr 495/
3: €i,0,2 Bi 2’ "Bi s
4lg q// = q// q'/

€i €i,0,1° "€5,0,2
’
5: return qe;

6. elseif Ien(q,ls,) = 2%
i

’ ro / /
/ Parse qﬁ; as qB; = (qﬂ§,07qﬂ§,1>'

7 0y = ‘123/. : q;;{
,0,1 i,0 i,1
’
8 : return qe{i,O,l
9: else:
10 : return |
11: endif
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Algorithm 4.30: V.Check—EIementaryVector(A, q’ﬁ,)

Public information and inputs

Public information: Length of the tuple of VOLE correlation inputs corresponding to the

masked witness \q"s,| ‘= 2 - Low — 6. Lengths of the blocks \q,'s,\ == 4 for ¢ € [3], and
i

‘qég‘ =2

Verifier's input: VOLE correlation challenge A € Fop, a tuple of VOLE correlation inputs

qi_}/ with each of element in Fop.

Output

Verifier's output: A tuple of VOLE correlation values q;, to help verify the elementary vector

structure the secret vector held by the prover.

1. if |en(q;3,) =12: ) Security level 1

/ Parse qj, as qp = (q"%,qgi,q}aé)-

2: for i € [3]:

3: q;: := V.Check-ElementaryBlock <q£a;>

4 q/e,_ =A. q;( // Here each element of the tuple q’e{ should be multiplied by A.
: ‘ i

5: endfor

6: g, = (q’%,q;,l,q;,2>

7 return g/,

8: elseif Ien(q;,) =14: / Security levels 3 and 5

’ r_ ’ ’ ’ ’
/ Parse Qg as qg = (qﬁé’qﬁﬂ 5 qﬂé,qﬁé)

9: (q;é),q'e,l , q'e,2> := V.Check-ElementaryVector (qéé,q;i , q;3,2>
10 : for i € [3]:
11 - q;,‘ = A- q'e( // Here each element of the tuple q;{ should be multiplied by A.
k2 k3 k2
12 endfor
13 : q., := V.Check-ElementaryBlock (q’ ,)
€3,0,1 B3

. ’ = A2 . ’
12 qeé,o,l qeé,o,l

. A ’ ’ ’ ’
15: q, = (qe()yqe&yqeéyqegyo’l)
16 : return q'e,
17: else :
18 : return L
19: endif
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Algorithm 4.31: V.CheckZero (A, 455 (Qui ) i k) [d—1] X [o] [[a]])

Public information and inputs

Public information: Degree of input polynomial [a] := d — 1.

Verifier's input: Polynomial [a], ¢, qu,; , = fu; ,, (Q) for (i,k) € [d — 1] x [p], A € Fap.

Output

Verifier's output: Boolean indicating if leading coefficient (coefficient of Xd) of some degree-d

polynomial f(X) (for which verifier already holds gy € Fop) is equal to zero or not.

1: if degree of [a] # d — 1:

2: return |

w

else :

// Generating q;i € Fop for i € [d — 1]

for i € [d — 1]:
@, = s Quy - A*
endfor

/. Parse [a] as [a] = aqg_1 X" 4+ -+ a1 X + ao
Compute G := Zf;ol a; - A?
a=a; + {5 d,, - A
10: b= (gZ4)

11: returnb

© 00 N O Ut
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Algorithm 4.32: V.Check-PKP(seed, pk, t, A, g, gc,, [a])

Public information

Public information: Matrix dimension n of the secret permutation matrix, d = [log, n].

Verifier's input: VOLE correlation challenge A € Fyp, the compressed masked witness t :=
(to,t1,...,tn_1), where each t; € ]Fg"""’7 ¢ VOLE correlation inputs q := (qo, ..., qn—1)
with each g; consists of £y values in Fop, (d — 1) VOLE correlations g, in Fop, polynomial

[a], and seed € {0, 1}?*.

Output

Verifier's output: Boolean value b indicating if the proof is accepted or not.

Compute VOLE correlations corresponding to shares of P in matrix form

1: (gB,Qq=z, gcolcheck) ‘= V.VOLE-Permutation (A, t, q)

// Parse gcoicheck as (QfD, @ oacan lIfn_1>

Check elementary vectors

2: forie€[0,n—1]

3: QGElemVecCheck; ‘= V.Check-ElementaryVector (4, g, )
/ Each QElemVecCheck; contains 6 elements if A = 128,

/ and 7 elements if XA € {192,256}.

4: endfor
5t QgElemVecCheck ‘= (quemVecCheck07 sy qEIemVecCheckn_l)
// Parse gelemvecCheck as (‘Ifn A1 chn+n_1)v

/ where, ¢ =6 if A = 128, and ¢ = 7 if XA € {192, 256}.

Compute z’ = Px
6: forie[0,n—1]

— n—1 .
T2 qmé = =0 quﬁj c Ty

8 : endfor

Compute y = Hzx'
9: forie[0,m—1]

—1
10:  Gy; = Qfipongn = 2je0 Nij " dat

11: endfor

Merge polynomials and run CheckZero

12: o« :=Hy(seed :: p- (cn +n +m)) )/ o should be parsed as € F§Z+"+m
13: qp =5 ay gy
14 : b := V.CheckZero(A, g5, qc, [a])

15: return b
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4.6 PERK

In this section, we describes the PERK.KeyGen, PERK.Sign and PERK.Verify al-
gorithms. The PERK key generation algorithm PERK.KeyGen takes the public
parameters for the PKP parampyp = (¢,m,n) as input along with the security
parameter A. The key generation algorithm outputs a public key represented by
a seed of length A\ which generates the matrix H (in deterministic manner), and
a vector x € Fy; along with the secret key also represented by a separate seed
of length A which generates the secret permutation in a deterministic way.

The key generation algorithm, first samples 3 distinct seeds Heed, PErMseed,
and kerseeq Of length A independently and at uniform random. It expands the
seed Hgq to compute a pseudorandom matrix M € F;nx(n*m) and sets the
public matrix in its canonical form as H := [I,, M]. Then it computes the
basis of kernel of H and samples a random vector ' by taking a random linear
combination of the basis vectors, this random linear combination is derived using
kerseed- The key generation algorithm also samples a permutation 7 using permseed
and sets = 7~ !(z’). The algorithms outputs pk = (Hgeed, ), and sk =

Pe€rMgeed-

Algorithm 4.33: PERK.KeyGen()

Public information and inputs

Public information: Public parameters parampyp = (g, m, n), and security parameter .

Output

The public key as a seed that generates the public matrix concatenated with the public
vector, and the private key as the seed that generates the secret permutation.

Sampling randomness

. $
L Hyeeq +— {0,1}*
2: kerseed (i {07 1}>\

2 $
3: perMseed «— {0, 1}A

Construct PKP instance

M « ExpandMatrixM (Hieeq) in FX (" =)
H = [I,, M] in FX"
x’ « ExpandKernelVector (kerseed, H) in ker(H)

7 <— ExpandPermutation(permeeed) in S,,

® N O G

x=7r"t(z')

9: return (pk = (Hseed, ®), sk = (permgeed))-
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Algorithm 4.34: PERK.Sign(msg, sk, pk)

Public information and inputs

Public information: Security parameter X, public parameters parampgp = (g, m,n),
paramyg g = (7, 1, p), ParamMyeepre ‘= (7, K, N, Topen, w) where, N := 72" is the number
of leaves of the VOLE commitment. Public key (expanded) pk := (H, x).

Prover’s input: Secret key sk represented as an array of positions of non-zero entries of the

secret permutation matrix (row-wise), message msg to be signed.

Output

Signature o for message msg generated using prover’s secret key sk.

Initialization
1: f:=H;y (pk||msg:: 2X)

2: rand <> {0,1}2*
3: (mseed,salt) := Hs (sk||fz||rand :: 3)\) € {0,1}* x {0,1}**

VOLE construction, commitments and consistency checks

4: (hcom,decom,ci,...,cr—1,u, V) := VOLECommit(mseed, salt :: £)
5: chy = H} (@||hcom|lC1]| - - - ||er—1||salt :: BA + 64)

6: u:= VOLEHash(chl,u 88 ZVOLEHashMask) S {07 1}€VOLEH35hM35k
7: V := VOLEHash(chi, V :: AyoLeHashMask) € {0, 1}VOLEHashMask X P/ hash column-wise

8: hy :=H; (‘7 g3 2)\) // hash in column major order

Committing to witness and PKP proof

9: (¢, 18], [2]‘?, [ColCheck](¥) := P.VOLE-Permutation (sk, ([wi,kDicin,kele)
10: chy HZ (chy||T||Rv ||t :: 20)

P.Check-PKP (sk, pk, [uws klicinl,keiers ([ir, 1D or 1y efa—11x (o] <h2 )

11: [a]

VOLE decommitments and opening VC

12: ctr:=0

13 : while True:

14 : chy = H3 (cha||[a]||ctr :: Toko + T1k1 +w)  // Toko + Tik1 + w bits
18 g if chs[roko + T1Kk1 : Toko + T1R1 +Ww — 1] = 0%

16 : 2" = ChallDec (ch3[0 : Toko + T1r1 — 1])

17 ¢ (pdecom, (com, ;% [c])ec(r]) = VC.Open (decom,i*)

18 : if the above output is not L break

19 : ctr =ctr 41

20: return o := (c1,...,¢;_1,%,t, [a], pdecom, (com, ;*[c])ec[r], chs, ctr, salt)
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Algorithm 4.35: PERK.Verify(pk, msg, o)

Public information and inputs

Public information: Security parameter X, public parameters parampgp = (g, m,n),
paramyg g = (7, 1, p), ParamMyeepre ‘= (7, K, N, Topen, w) where, N := 72" is the number
of leaves of the VOLE commitment. Public key (expanded) pk := (H, x).

Verifier's input: Public key (expanded) pk := (H, x), message msg, and a signature o.

Output

Bit b indicating if the signature o verifies as a valid signature for message msg with pk as

the public key. If b = 1 the signature is accepted as valid, if b = 0 it is rejected.

Initialization

1: Parse o := (c1,...,¢7-1,%,t, [a], pdecom, (com, ;*[c])ec(0,r), Chs, ctr, salt)
2: if ch3[roko + T1k1 : Toko + T1k1 +w — 1] # 0¥ then return 0
3: p:=H;y (pk||msg :: 2X)

4: 4" := ChallDec (ch3[0 : Toko + T1k1 — 1])

5: Reconstruct VOLEs and check commitments

6 : out := VOLEReconstruct (i*, pdecom, {com,, ;* }T’T,salt)

7: ifout=L:

8: return 0

9: else:

10 : Parse out as out := (hcom,Qg,...,Q;fl).
11: chy == H3 (fi||hecom|le1]] - - - [|er—1]|salt :: X + 64)

12 : Check VOLE'’s consistency

13: for e € [7]

14 : (80s -+ 0r.—1) = BitDec(¢*[e])
15  if pe > ke

16 : zeropad = O/VOLEHashMask X (e —re)

17 : else :

18 : zeropad = ¢

e D, :=1[00 -@- 84,1 -0 zeropad] € {0, 1}*VOLEHashMask X Fe
20 : if e=0 then Qo := Q)

21 : ife>0 then Q. =Q. ®[6p-cc-- 8,y Cc zeropad]
22 : endfor

23: Q:=[Qo Qr-1]

24: Q= VOLEHash (CT117 Q: eVOLEHashMask) € {0, 1}VOLEHashMask X »
25: hy =H1(Q® [Do--D,_1] :: 2))

26 : chy = HZ(chq||@||hv ||t :: 20)

27 : Check PKP’s consistency

28 : chz = H3(cha||[a]||ctr :: Toro + T1R1 + W)
29 : by = V.Check-PKP(seed, pk, t, A, q, ghTa])
30: if by =1 and chs = chz then

31: return 1

32: else return 0




5 Parameter Sets and Sizes

We provide several parameter sets using the nomenclature PERK-X-Y where
X € {1,3,5} denotes the security level and Y € {Short, Fast} refers to size / per-
formance trade-off considered for the parameter set.

5.1 PKP parameters

The PKP parameters parampgp = (¢, m,n) used in PERK are given in Table 1.
Parameters were chosen to minimize the signature size while offering concrete
bit-security of PKP above the NIST specified thresholds for category 1, 3 and 5.
We give full details on estimating the security of PKP in Section Section 7.2.1.

Instance q n m
PERK-1 2048 64 27
PERK-3 2048 92 43
PERK-5 2048 118 59

Table 1: PKP parameters used in PERK

5.2 MPC and VOLE parameters

The tree parameters paramqyeeprg = (7, K, IV, Topen, w) are given in Table 2. The
number of parties and iterations is governed by the knowledge soundness of
the protocol. The MPC parameters are also chosen to guarantee a soundness
probability of 27* for A € {128,192,256} for category 1, 3 and 5 respectively.
Following common practice we propose two different parameter sets, a short
variant using N’ € {2048,4096} and a fast variant using N’ € {128,256}, where
N’ denotes the number of leaf nodes in each individual tree. The table below
lists the total number of leaves N := 72" in all the trees together.

The VOLE related parameters paramyg g := (7, i, p) are given in Table 3.
The parameter p denotes the dimension of finite field (Fa,) in which the VOLE
correlations (seen as polynomials) reside. We also need to compute the PKP
relation H Px using the VOLE correlations therefore the fields should maintain
the following tower relationship: Fo C F; C F2p and Fy C Forx C Fon C Fop.

The witness parameters param,iness = (1, d, Crow, £, £czMask s OVOLEHashMask; £)
are given in Table 4. To prove the knowledge of the secret witness P € FZX",

we are using / VOLE correlations that are computed using param, ;e where:

e 1 is the number of rows and columns in the permutation matrix ;
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d = [log,(n)] is the degree of polynomials, which will help prove the knowl-
edge of the witness using VOLE correlations ;

leow = d + 6 is the length of (compressed) witness (in bits) for each row of
the secret permutation matrix ;

£ :=n Loy is the length of the (compressed) witness (in bits) for full secret
permutation matrix ; This is essentially the witness size that affects the
signature sizes ;

Lezmask = (d — 1) - p is the number of bits required to construct masking
VOLE correlations in Fgp x Fgp required in P.CheckZero ;

VOLEHashMask ‘= A+ B is the number of bits required for masking VOLEHash.
We always set B := 16 for all our parameter sets and instances ;

/= IvOLEHashMask + £ + £czmask 1s the number of bits that should be commu-
nicated in each round. Therefore, the signature size is affected by the value

(r—1)-¢

Note that in Tables 2 and 3, 7 is the number of repetitions required to desired

security level p > X (in our case p > A for all cases). Therefore, following criteria
must always be satisfied:

T=To+TI=T)+ T ;

p = Topo + T{H1 3

pP=A;

Toko + T1k1 +w — logy(d) > A

Instance T To T Ko K1 N Topen w
PERK-1-Short 11 11 0 11 0 3200 106 9
PERK-1-Fast 16 9 7 8 7 22528 110
PERK-3-Short 16 8 8 12 11 5120

166 10
PERK-3-Fast 24 16 8 8 7 49152
PERK-5-Short 22 8 14 12 11 7424 222 8

PERK-5-Fast 32 26 6 8 7 61440 220
Table 2: BAVC parameters used in PERK
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Instance

/ /

T 7o 1 Ho M1 p
PERK-1-Short 11 11 0 12 0 132
PERK-1-Fast 6 4 12 9 8
PERK-3-Short 16 6 10 13 12 198
PERK-3-Fast 24 6 18 9 8
PERK-5-Short 22 22 0 12 0 264
PERK-5-Fast 32 8 24 9 8

Table 3: VOLE fields parameters used in PERK

Instance B d Lrow 14 Lczmask 14

PERK-1 3 9 576 264 984
PERK-3 16 4 10 920 594 1722
PERK-5 4 10 1180 792 2244

Table 4: VOLE correlations parameters used in PERK

5.3 Signature and key sizes

Table 5 presents the public key, secret key, and signature sizes of PERK. The
size of the public key pk is A + n[log,(g)] bits while the size of the secret key
sk is A bits. In practice, our implementations concatenate the public key within
the secret key in order to respect the API provided by the NIST.

A PERK signature consists of:

a salt, a hash value ch3 and a counter ctr making a subtotal of 3\ + 66 bits ;
(t — 1) VOLE correlation ¢y, ..
7 commitments (com ;[¢])ec|r] €ach of size 2) bits ;

a masked witness t of size n - £,o, bits ;

a VOLEHash value u of size A + 16 bits ;

some opening information pdecom of size A - Typen bits ;

a polynomial [a] represented as coefficients with [log,(n)] - p bits.

., c-—1 each of length 7 Dbits ;

Overall, for a security level A, the signature size is given by:

o] = 4X+82 +
——

salt,ctr,chs,u

T

2N+ (r—=1)-4

commitments VOLE correlations

+ |—10g4(n)-| pEA- Topen +n- (Dog4(nﬂ + 6) .
N— e N——

[a]

pdecom t
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Instance |sk| Ipk| o]

PERK-1-Short 16 B 0.10 kB 3.48 kB
PERK-1-Fast 16 B 0.10 kB 4.32 kB
PERK-3-Short 24 B 0.15 kB 8.32 kB
PERK-3-Fast 24 B 0.15 kB 10.43 kB
PERK-5-Short 32B 0.19 kB 14.83 kB
PERK-5-Fast 32B 0.19 kB 18.22 kB

Table 5: Keys and signature sizes of PERK

6 Implementation and Performance Analysis

This section provides performance measurement of our PERK implementations.

Benchmark platform. The benchmarks have been done on a machine running
Ubuntu 22.04.2 LTS, that has 64 GB of memory and an Intel® Core™ i9-13900K
@ 3.00 GHz for which the Hyper-Threading and Turbo Boost features were
disabled. For each parameter set, the results have been obtained by computing
the average from 10 and 500 random instances for the reference and optimized
implementation, respectively. The scheme has been compiled with gcc (version
11.4.0) and the following third party libraries have been used: XKCP (commit
7fab9cOec4) and djbsort (version 20190516).

Remark on the instantiation of PERK. The overall efficiency of PERK
is determined to a large extent by the symmetric primitives employed in its
construction. The PERK’s pseudorandom generator (PRG) may be instantiated
using AES/Rijndael or SHA3, while hash functions are realized through SHA3.
For benchmarking purposes, we provide results for two instantiations of the
commitment scheme: one using AES/Rijndael and another using SHA3. It is
important to emphasize that the choice of instantiation can lead to substantial
variations in performance.

6.1 Reference implementation

The reference implementation is written in C and have been compiled using the
compilation flags -03 -funroll-loops -flto. The performances of our refer-
ence implementation on the aforementioned benchmark platform are described
in Table 6-8.
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Instance Keygen Sign Verify

PERK-1-Short 50 K 13615 M 13608 M
PERK-1-Fast 50 K 1947 M 1943 M
PERK-3-Short 93 K 89057 M 89184 M
PERK-3-Fast 93 K 9360 M 9323 M
PERK-5-Short 146 K 111810 M 111622 M
PERK-5-Fast 130 K 13678 M 13591 M

Table 6: Performances of the reference implementation (in CPU cycles) - AES
instantiation for both PRG and commitments

Instance Keygen Sign Verify

PERK-1-Short 47 K 11242 M 11235 M
PERK-1-Fast 45 K 1610 M 1606 M
PERK-3-Short 93 K 74494 M 74613 M
PERK-3-Fast 93 K 7842 M 7805 M
PERK-5-Short 136 K 93676 M 93507 M
PERK-5-Fast 127 K 11486 M 11402 M

Table 7: Performances of the reference implementation (in CPU cycles) - AES for
PRG and SHA3 for commitments

Instance Keygen Sign Verify
PERK-1-Short 40 K 125 M 115 M
PERK-1-Fast 38 K 30.9 M 26.3 M
PERK-3-Short 82 K 401 M 354 M
PERK-3-Fast 83 K 121 M 82.3 M
PERK-5-Short 124 K 822 M 759 M
PERK-5-Fast 120 K 254 M 193 M

Table 8: Performances of the reference implementation (in CPU cycles) - SHA3
instantiation for both PRG and commitments

6.2 Optimized implementation

A constant-time optimized implementation leveraging AVX2 instructions have
been provided. Its performances on the aforementioned benchmark platform are
described in Tables 9-11. The following optimization flags have been used during
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compilation: -03 -funroll-loops -march=native -mavx2 -mpclmul -msse4.2
-maes.

Instance Keygen Sign Verify
PERK-1-Short 34 K 16.3 M 12.6 M
PERK-1-Fast 33 K 5.0 M 34 M
PERK-3-Short 66 K 143 M 130 M
PERK-3-Fast 65 K 33.5 M 232 M
PERK-5-Short 102 K 191 M 172 M
PERK-5-Fast 100 K 53.2 M 374 M

Table 9: Performances of the reference implementation (in CPU cycles) - AES
instantiation for both PRG and commitments

Instance Keygen Sign Verify
PERK-1-Short 33 K 27.8 M 24.3 M
PERK-1-Fast 33 K 6.6 M 5.0 M
PERK-3-Short 66 K 155 M 142 M
PERK-3-Fast 65 K 34.9 M 24.5 M
PERK-5-Short 101 K 236 M 217 M
PERK-5-Fast 9 K 58.4 M 42.7 M

Table 10: Performances of the reference implementation (in CPU cycles) - AES
for PRG and SHA3 for commitments
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Instance Keygen Sign Verify
PERK-1-Short 35 K 474 M 43.5 M
PERK-1-Fast 34 K 9.4 M 79 M
PERK-3-Short 66 K 142 M 129 M
PERK-3-Fast 65 K 33.4 M 23.2 M
PERK-5-Short 103 K 274 M 2556 M
PERK-5-Fast 102 K 63.1 M 472 M

Table 11: Performances of the reference implementation (in CPU cycles) - SHA3

instantiation for both PRG and commitments

6.3 Known Answer Test values

Known Answer Test (KAT') values have been generated using the script provided
by the NIST. They are available in the folder KATs and files are the same for both
reference and optimized implementation. In addition, examples with intermedi-
ate values have also been provided in these folders. Notice that one can generate
the aforementioned test files using respectively the kat and verbose modes of
our implementation. The procedure to follow in order to do so is detailed in the

technical documentation.
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7 Security Analysis

7.1 Security proof

Our signature scheme is strongly existentially unforgeable under chosen-message
attacks (SUF-CMA-secure) in the random oracle model (ROM)® under the as-
sumption of hardness of PKP. The proof of SUF-CMA security, written below,
happens in two stages:

e We first show that the slightly modified signature, which we call PERK’,
is existentially unforgeable under no-message attacks (EUF-NMA-secure) in
the ROM assuming the hardness of the PKP problem.

e We then show that the signature scheme PERK is SUF-CMA-secure in the
ROM by assuming that PERK’ is EUF-NMA-secure in the ROM and some
computational hardness of the functions.

We also discuss the beyond unforgeability features (BUFF) securities.

Notations. To simplify notations, we define the following variables:
i == Hy(pk||msg) ;

® ay ‘= (hcom7cla ce '767'71) )
e chy := Hi(ji||a1||salt) ;
e ay = (U, hy,t);
2 :
o Ch2 = H2(ch1||a2) ;
e a3 = [a] ;
e chz == H3(chs||a3) ;
e ay = (cy,...,cr_1,1,t, [a], pdecom, (com, ;1) ctr, salt).
By these notations, we have o0 = (chs,a4). In what follows, we denote the

internally reproduced values in the verifications PERK.Verify(pk, msg, o) and
PERK . Verify(pk, msg*, o) by - and ~*, respectively.

Preliminaries. Hereafter, we show the extractable-binding and multi-hiding
properties of VOLE commitments. The following lemma helps us estimate the
bound for one-wayness and collision-resistant property of random oracles.

Lemma 7.1 (Random oracle graph). Let H: X — Y be the random oracle.
We consider the following random oracle graph game between a challenger and
an adversary:

1. The challenger initializes two sets V and € by O and runs the adversary.
2. The adversary can query the random oracle H in the following two ways:
— The adversary queries y € Y to the random oracle H;
o Ify &V, then the challenger adds node y to V.

5 If the Rijndael-based commitment is employed for Comi, then we also require the
ideal-cipher model (ICM).

73



— The adversary queries © € X to the random oracle H; Let H(x) = y.
o Ify €V but there is no edge (z',y) € &, then the adversary wins
(because it breaks onewayness).
o If an edge exists (x',y) € & with ' # x, then the adversary wins
(because it finds a collision).
e Llse, the challenger adds nodes x andy to V and an edge e = (z,y)
from x toy to £.

If the adversary makes at most Q queries to H, then the adversary’s advantage

is at most Q?/|Y|.

Exzxtractable-binding property. Hereafter, we start by showing the extractable
binding property of VOLECommit.

Lemma 7.2 (Extractable Binding). Let.A be an adversary that makes geom,1
and geom,2 queries to Com; and Comy, respectively, where Com; and Comqy are
modeled as random oracles. © We consider the following security game, which
uses an extractor Ext defined later:

1. (hcom,salt) <= A“M-Comz2 (1A "commit).

(U}, VF)eepr) ¢ Ext(Edom: E2om» Pcom, salt), where EL . and EZ, are the lists
for the random oracles Comy and Coms.

(chs, pdecom, com) < A“m1:Com2 (1A ‘open).

i < ChallDec(ch).

For e € [1], (0¢,0,---,0e,u.—1) = BitDec(¢*[e]).

(heom; Qo, - - -, Q+—_1) < VOLEReconstruct®®™m-¢°M2 (3 pdecom, com, salt).
Output False if

(a) heom = L 07 hcom # heom; or

(b) Qe =V & [dcoul b ul] for alli € [1].

8. Output True otherwise.

o

NS G Lo

Let AdvExtYO'E = Pr[A wins] be A’s advantage. We have
AdVExtYO'E < (geom1 + N)2/2%* + (geom,2 + 1)2/222.

Proof. The proof is essentially the same as that in FAEST’s specification. We
define the straight-line extractor Ext as follows:

1. Given hcom, find a preimage {com. ;} under Coms from the list 2. If there
is no preimage or multiple ones, then output | and abort.

2. For each e € [r] and i € [N.]: find preimages seed.; of com.; from & .
If there is no such preimage, then set seed.; = L. If there are multiple
preimages, then output L and abort.

3. For each e € [7], compute (u., V) as follows:

e Case 1: If Ext finds all preimages seed. ; for e, then it computes V, and

u, honestly via ConvertToVOLE.

7 If the Rijndael-based commitment is employed for Com;, then we also require the
ideal-cipher model (ICM).
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e Case 2: If a single preimage is missing, then set A, = j*. It then computes
(Ue,qe,0;s---19e pu,—1) via ConvertToOVOLE with permuted seed with A,
and sets Q. = [QE,O te qe,/te—l]- Itsets V. = Q. @ [56,0ue te 56,/L€—1u€]'

e Case 3: If multiple preimages are missing, then output L and abort.

4. Output (ue, Vo) eep-

5. If it fails to extraction, then it adds the image that missed the preimage to
Véom or V(2:0m

Let Fail be the event that the extractor fails to output (ue, V2)e. Because of
the random oracle graph game, we have

PI‘[Fall] < (QCom,l + N)2/22)\ + (QCom,Q + 1)2/22)\3

where we add IV for gecom,1 since we have at most N commitments missing preim-
ages.

If —Fail, then hcom uniquely determines (com, ;). ; and each com. ; uniquely
determines seed, ; for e € [7] and i € [N,]. (NOTE: For each e € [7], at most one
of seed. ; can be L.) In both cases (case 1 or case 2), the extraction is perfect,
as explained in FAEST’s specification. Thus, the extractor’s failing probability
is at most ((qum,l + N)2 + (geom 2 + 1)2) L2722,

Multi-hiding property. We next show the multi-hiding property of VOLECommit.
To do so, we first define the simulation algorithm, SimVOLECommit.

75



Algorithm 7.1: SimVOLECommit(i,saIt,f)

Public information and inputs

Public information: A number of iterations 7, a number of parties N = 22;01 N, ke =
logy(Ne), p = koTo + k171

Prover’s input: ¢ and salt and 0. We assume that 4 is accepted.

Output
A commitment heom € {0, 1}2)‘, a sibling path pdecom, unopened commitments (com, ;ie])e,
VOLE corrections (e¢1,...,¢r—1), and VOLE correlation secrets u

1: hidden:={N — 1+ (e, ile]) : e € [0,7)}

2: opened :={N —1,...,2N — 2} \ hidden

3 for ¢ from N — 2 downto 0 do

4 if 24 4+ 1 € opened and 27 4 2 € opened then

5: opened = opened U {4}

6: endfor

7: nodes[0],...,nodes[2N — 2] =0,...,0

8: fori€ [0,N—1) do

9 if 27 4+ 1 € opened and 27 4 2 € opened then

10 : (nodes[2i + 1], nodes[2i + 2]) <— PRG(nodes][i], salt)

11: else

12 (nodes(¥) 24 + 1], nodes¥) [2i + 2]) « {0, 1}2}

13: forec€ [0,7) do

14 : for i € [0, N.) do

15 : seed. ; = nodes[N — i + (e, i)]

16 : if ¢ = i[e] then

17 : com, ; +s {0,1}%*

18: else

19 : com ; + Comy(salt, e, i, seede ;)

20 :  hcom + Coma(salt, {come ;})

21 : decom = (nodes, (come,;))

22 :  (pdecom, (com, jre])e) < VC.Open (decom, %)
231 (w,er,...,er_1) <8 (FL)T

24 : return (hcom, pdecom, (comeyi[e])(37 Ci,...,Cr—1,U).

Lemma 7.3 (Multi Hiding). Let us consider the following Q-multi-hiding
game for VOLECommit between an adversary A and a challenger. Let b* € {0,1}.

1. Forj € [Q]:
(a) Take (r),salt")) uniformly at random.
(b) Take a random challenge ch§) « {0, 1}70ro+Tm4w yntil it is accepted:
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i. If chgj)[mno + 7K1 ¢ Toko + Tik1 +w — 1] # 0%, then re-sample.
ii. Compute i) by ChaIIDec(chéj)[O : Toko + Tik1 — 1]). If the indices
lead to len(revealed) > Typen, & then re-sample.
() If b* = 0:

. Compute (hgm,decom(‘) cgj), . (') Lu®) V@)« VOLECommit(r(), salt"?) 7,

where decom™ = (nodes?) (com(])))
. Compute (pdecom(J), (com(J? , )) + VC.Open(decom™) ().

e}z(J)[e]
(d) If b* =1: _ _ _ '
Compute (héom,pdecom( 7) (comgzm[e])e,cgj),.. c(J) ,u®)) « SimVOLECommit (i@, salt(?)).
2. b<—A(( Com,pdecom() (comizm[ ]) c(lj),...7 (J) ,uld) ch(])) E[Q])'

8. Output True if b = b*; otherwise, output False.
Then, the adversary’s advantage
AdvHide"°'E[Q] := |Pr[A wins | b* = 0] — Pr[A wins | b* = 1]|
is at most k-AdvPRGPR®[Q, 7]+-AdvPRFPRC2:CoM 10 o] where k = [logy(N)]+1.

Proof. We use the standard GGM tree argument.

Gp: This is the original game with b* = 0. Thus, we have Pr[Wy] = Pr[A wins |
b* =0].

Gi: We gradually replace GGM trees constructed in VC.Commit by following
iU). We define Gy for k =0,...,k as follows:
Gi.r: We modify VC.Commit invoked from VOLECommit(r@ salt) /) as

follows:
1. Define opened?) := {N—=1,...,2N =2} \{N — 1+ 9(e,iW[e]) : e €
[7]}.
2. For ¢ from N — 2 downto 0: if both 2¢ + 1,2i + 2 € opened(j) then
opened”) := opened”) U {i}.
3. Fori e [N —1]:
(a) If i € [2%] and i & opened”), then (nodes”)[2i + 1], nodes?)[2i +
1)) + {0,112
(b) else, (nodes'?)[2i+1], nodes”)[2i+1]) +— PRG (salt, nodes]i] :: 2)).
We note that the width of co-path is at most 7. Hence, this introduces
the difference at most AdvPRG"R¢: Q, ]
We note that, at the final game G, , the hidden seed( i = nodes'’) [N —

1+ 9(e,i9)[e])] are chosen uniformly at random.
Ga: We next replace (come7i<j>[e])( 7) with random string and r(() )m[ | with ran-

dom vector for all e € [0, 7) and j € [Q] in the computation of ConvertToVOLE(N,, (seed(

invoked by VOLECommit(r(7), salt?) 7). This is Justlﬁed by the joint PRF se-
curity of PRGy in Convert ToVOLE and Com; since seed (])[ | are hidden from

the adversary. Thus, the difference is at most AvaRFPRG2 Comiy 7).

8 See VC.Open (decom,i*). Note that decom is independent of the computation of
revealed.

7
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Gj3: Next, we replace ugj ) for all e and j with random vectors in the computation

of ConvertToVOLE(N,, (Seedgg)ie[o,m)a salt?) /) invoked by VOLECommit(r@), salt™?), 7).
Since ul) = Di€[0,N )i D) [e] PRGz(salt(j)7seedgg )@ r((){g(j)[e], this does
not change the distribution from the previous game and we have Pr[Ws] =
Pr[Ws]. Now, in this game, every u for e € [7] is random. Thus, cz(-j ) =
uéj) @ugj) is also random and (u(?), cgj), ol cgjzl) is random. Therefore, this
game is equivalent to the game for b* = 1, and we have Pr[W3] = Pr[.A wins |

b =1].

Wrapping up, we have k - AdvPRG"R®1[Q, 7] + AdvPRFPRC2:ComM () 7] as the
upper bound.

Security proofs for the EUF-INMA security. We here consider the security
of the slightly modified signature scheme denoted by PERK’. Concretely speak-
ing, we replace “(mseed,salt) < Hs(sk||p|[rand)” in line 3 of PERK.Sign with
“(mseed, salt) s {0, 1}**2*”. Our proof mainly follows that in FAEST’s speci-
fication, but we modify several points to adopt their proof in our setting, e.g.,
showing the formal proof for grinding and optimizations.

Theorem 7.1 (EUF-NMA security in the ROM). Let B be an adversary
against the EUF-NMA security of PERK . Let Geom,1; Geom,25 Q15 G2,1, 42,2, 2,3,
and q4 be the number of queries B made to Comy, Comy, Hy, Hi, H2, H3, and
Hy, respectively. Suppose that VOLEHash is an e,-almost universal hash fam-
ily (Lemma 4.1). We have another adversary C against the PKP assumption
(Definition 2.10) such that

Adveuf—nma < AdVOWc + AvaRExpandKernelVector + AdVPRExpandPermutation
B >
+ (qcom,l + Gcom,2 + q1 + (N + 2)(]2,1 + QQ2,2 + Q2,3)2 : 272/\

T - —
T2 (2> 6ot g2 277 4 (qs+ go)? 27 BATOY
+q2,3d - 9~ (Toro+TiRI+W) | 9=A+1
The running time of C is about that of B.

We follow the games defined in FAEST’s specification and show the bounds
of the differences between the games.

G;1: The original EUF-NMA game. We have
Pr[W;] = Advig™me.

We note that the random oracles and commitment are implemented by lazy
sampling and the lists, Eéom, 5(2:om7 &, £, &2, &3, and &,. Here, we use &
because they will be edge sets of the random oracle graphs.
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GQ:

G3:

G4:

G5!

GG:

In this game, we consider the random oracle graph games. To do so, we
additionally consider the vertex sets Vi ., Véom: V1. Va, V3, and Vi. If the
adversary wins the random oracle graph game, then we abort.

Let Fail; be the event that the adversary wins the random oracle graph game.
For any G;, we have Pr[W;] = Pr[Fail;] - Pr[W; | Fail;] + Pr[—Fail;] - Pr[W; |
—Fail;] < Pr[Fail;] + Pr[W; | —Fail;]. We note that if Fail, does not occur,
then Gg is equivalent to Gy. Thus, we have Pr[W;] = Pr[Ws | —Faily].

We next use the extractor Ext in the proof of Lemma 7.2 on every query
([, heom, -+, salt) to Hj to obtain (we, Ve)eelr)- If the adversary’s forgery is
valid but one of the extracting test fails, then the adversary loses. Because of
the modification introduced Gg, we have Pr[W; | —Failz] = Pr[Ws3 | —Fails].
But, the number of queries blows up because of the queries the extractor
made. We have

Gcom,1 = Gecom,1 t+ NQ2,1 and Gcom,2 = Gecom,2 + 42,1,

since Ext is invoked at most g2 1 times and each invocation adds at most N
queries or one query to Com; or Comsg, respectively.

We next modify H3; if the query is extractable, then it runs the VOLE con-
sistency checks with extracted (., Vz)ce[r- While we omit the details of the
check, FAEST’s specification shows that the probability that the consistency
check fails €, (g)7 where ¢, is universality of VOLEHash, by using [BBD*23c,
Thm.2]. Since we take VOLEHash from FAEST, we have the same probabil-

ity. Thus, we have

PI[W3 | —|Fa|I3] < PI“[W4 | —|Fail4] +q2,1 (;) €y,

where €, is universality of VOLEHash.
We next modify H3 to force the chain of hash values. On query (chy, hy, ...)
to H3, we do as follows:
— If ch; has no preimage, then query ch; under Hi; that is, if ch; ¢ V3,
then add ch;y to V3.
— If hy has no preimage, then query hy under Hy; that is, if hy € Vi, then
add hy to V.
We have Pr[W, | —Faily] = Pr[W5 | —Fails]. By this modification, the bound
of the random oracle queries to the random oracle graph game are

@1 =q1+qe2 and go1 = q2,1 + G22.

We modify H3 as follows: On each new query (chy, Ay, ...) to H3, if the query
related to ch; is extractable and VOLE-consistent, then do as follows:
1. Take a random chy +$ {0, 1}2*+64_ Tf chy is already queried to Hy, then
it aborts.
2. If the ZK soundness check below fails, then abort.
cn+m

(a) Let g FS2 ™. That is, we take a random sample o s F5
and put (chg, &) to &4 for Hy.
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G7:

Gg:

Gg:

(b) Compute e € F5;T™, which is a vector consisting of the degree d
coefficients of f;(X) for j =0,...,cn +m — 1 constructed from the
extracted witness.

(c) If e # 0 but Z;ngfl aje; = 0, then the output “fail”. Otherwise,
output “success”. ~

3. Otherwise, look up a preimage V' of hy. If a preimage does not exist,
then abort.
4. Otherwise, return chs.
On the collision test for step 1, we have a bound (g4 + g2,2)?/23* 4. If « is
uniformly at random, then the probability that the check in step 2 fails is at
most €, = 1/2°.
Taking a union bound, we have

Pr[Ws | —Fails] < Pr[Ws | —Failg] + qo.2 - 277 + (g4 + qo.2)? - 27 G4,

We next modify H3 as follows: On query (cha, [a], ctr) to H3, we do as follows:
e If chy has no preimage, then query chy under H3; that is, if chy & V3,
then add chs to V3.
We have Pr[Ws | —Failg] = Pr[W7 | —Fail7]. The number of random oracle
queries is
@22 = q2,2 1+ q2,3-

We modify the handling H3 on a query (chy, [a], ctr) as follows:

1. If chy has no preimage, then abort. Otherwise, let (chy, hy,...) be the
preimage of chs.

If Ay has no preimage, then abort.

Otherwise, extract w and V', and define the witness w.

Sample chy « {0, 1}7oro+Tiritw,

If w doesn’t satisfy the constraints and the bad event occurs, then abort
the game. The bad event is the event that, for uniformly random chs €
{0, 1}morotTiritw in gtep 3, 1) chy passes the verification test (Tppen, and
0% check) and 2) for uniformly random chg € {0, 1}70R0+ TR+ e have
A = A’ where A is computed from chs and A’ is computed from the
query [a] by the adversary.

The probability 1) is |#accepted challenges|/270%0TT1F1+w and the probabil-
ity 2) is at most d/|#accepted challenges| since [a] is treated as (d—1)-degree
polynomial ag—1 X%+ .+ a1 X + ap and the verification algorithm checks
if gp + 30 g, - AF = X9} a; A7 in V.CheckZero invoked by V.Check-PKP.
Thus, we have the bound

Cu N

Pr[W7 | —Fail7] < Pr[Wg | —Failg] + g2 3 -

d |#accepted challenges|

= PT[Wg | ﬁF{_«!”g] + q2,3 - d- 2_(7'0"fr0+7'1:‘€1+w).

We next modify the key-generation algorithm. In the experiment, the key-

generation algorithm chooses @’ & ker(H) and 7 %S, instead of com-

puting &’ < ExpandKernelVector(kerseed, H ) and 7 < ExpandPermutation(permseed)-
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PI‘[Wg | _\Failg} S PI‘[WQ | _‘Failg]

+ AdVPRExpandKerneIVector + AdvP RExpandPermutation

We then discuss the evaluation of Pr[Failg] and the reduction to the PKP
problem.
Evaluation of Pr[Failg]. The numbers of queries to the random oracles are now

Gcom,1 = Gcom,1 + (J2,1N, Gecom,2 = Qecom,2 + G2.1,
G1=q1+Gq22,G2,1 = q2,1 + G2, and G22 = q2.2 + G2.3.

Thus, the advantage of the random oracle games is at most

Pr[Failg] < @om 1 /2 + Goom2/2° + G /2% + @51 /2210 + 35 5 /22
< (QCom + Qeom,2 + q1 + (N + 2)(]2,1 + 2(]2,2 + Q2,3)2/22’\~

Reduction to PKP.

We construct a reduction algorithm C using B in the final game Gy condi-
tioned on that Failg does not occur. The reduction algorithm C against our PKP
assumption (Definition 2.10) is defined as follows:

1. It is given a random seed Hieeq & {0,1}* and =’ € Fy, where M <«

ExpandMatrixM(Hyeea), H == (I, M] € F*" &/ <& ker(H), 7 <> S,

and @ := 7~ !(a’). It wants to output 7 such that H (7(x)) = 0.

2. Tt sets pk = (Hgeed, @) and run B in Gg.

3. Finally, B outputs (m*,c*) and stops. If B wins and Faily does not occur,
then C extracts the witness P from the random oracle queries, and outputs
7 corresponding to P.

Since the simulation of C is perfect, if B wins the game, then C can extract
the witness P from B’s queries to the random oracles. Thus, we have

Pr[Wy | —Failg] < AdvOWe.

Security proofs for the SUF-CMA security. We follow the proof in FAEST’s
specification while we consider an optimized version and we will repair some gaps
in the original proof. Thus, we need to consider a special form of Fiat-Shamir
with aborts, which only samples chg instead of the whole. Hence, we enhanced the
repaired proofs for 3-round Fiat-Shamir with aborts in Devevey et al. [DFPS23]
and Barbosa et al. [BBD"23a]. To consider SUF-CMA security, we also employ
the techniques in [KX24b].

Theorem 7.2 (SUF-CMA security in the ROM). Let A be an adversary
against the EUF-CMA security of PERK. Let Qprg,1, Qcom,1, Qcom,2, @1, Q2.1,
Q2.2, and Q2.3 be the number of queries A made to PRGy, Comy, Comg, Hy, H3,
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H3, and H3, respectively. Let Qsig be the number of queries A made to the signing

oracle. Let Qs;g be the number of queries the signing oracle made to H3. We then
have an adversary B against the EUF-NMA security of PERK' satisfying

AdvEFeme < Advg ™ 4 Qg - AdVPRF

+ AdvColl”R Qg 1 + (N — 1)Qsig]

+ AdvColl ™ [Qcom + NQsig] + AdvColl®™ [Qcom.2 + Qsig]

+ AdvColl™ [Q1 + 2Qug] + AdvColl" Q2,1 + Qsig]

+ AdvColl™s Q2,2 + Qsig] + AdvColl? [Q2.3 + Qsig]

+ Quig(Q2.1 + Qsig)2™ > + Quig(Q2.2 + Quig)2” "M + Quig (Q2.3 + Qsig)2™ >

+ k - AdvPRGPRE [Qgig, 7] + AdvJPRFPRG2:Comi [ o 7]

+ AdvNI®™ [7Qg]
Remark ~’7.1. Let us discuss the ordNer of Qsig. Let r := |# accepted challenges|/2ToRo+T1R1+w,
We let Qsig == (2/r) - Qsig- This Qsig gives us Pr[# success is less than Q] <

exp(—Qsig/4) and the right-hand side is negligible if Qs = w(log(A)). (See
e.g., [KX24a, Pf. of Thm.1].)

Corollary 7.1 (EUF-CMA security in the ROM). Let the parameters be
the same as Theorem 7.2. We then have an adversary B against the EUF-NMA
security of PERK' satisfying

AdvEem < Advg ™ - Qg - AdvPRFHS
+ AdvCol™ [Q) + 2Quig] + AdvColl™2[Qa 1 + Quig] + AdvColl™2[Q2.5 + Quig]

+ Quig(Q2,1 + Qsig)27* + Quig(Qa.2 + Quig)2” "M + Quig (Qa,3 + Quig)2™
+ k- AdvPRGPR® [Qgig, 7] + AdvJPRFPRC2:Comi[ 7).

In what follows, we denote W; the event that the adversary wins in G;.
Gi: The original SUF-CMA game. We have
Pr[W;] = Advitema,

Go: The signing oracle chooses (mseed, salt) < {0, 1}**+2* instead of (mseed, salt) :=
Ha (sk|[il|rand).
Since mseed is kept secret in the whole procedure, we can treat mseed as a
one-time secret key of PRF. Thus, the difference between G; and Gg is

|Pr[W1] — Pr[Wa]| < Qsig - AdvPRF™3.

Remark 7.2. If the signature scheme is deterministic, we use the argument
for the ROM in [BPS16, Thm.4], which leads to the inequality

PI[W]_] S 2- PI‘[WQ]

82



G3:

G4:

G5:

GG:

G7:

Next, we introduce a collision check for PRG for the GGM tree, Com;, Coms,
Hy, H3, HZ, and H3. If there is a collision among the queries to those oracles
in the whole security game, then the challenger aborts the game. We easily
have

|Pr[Wa] — Pr[Ws]| < AdvColl”™®® [Qprg1 + (N — 1)Qsig]
+ AdvColl ™ [Qcom + N Qsig] + AdvColl ™ [Qcom,2 + Qsig]
+ AdvColl™ [Q1 + 2Quig] + AdvColl™ [Q2.1 + Quig]
+ AdvColl™3[Qs 5 + Quig] + AdvColl™ [Qs 5 + Quig).

Remark 7.3. If we only consider the EUF-CMA security, then we do not
need collision checks for PRG; for the GGM tree, Com;, Coms, and H3.

The signing oracle programs H} by choosing ch; s {0, 1}°A+64,
Since salt are chosen uniformly at random over {0,1}*, a;’s min-entropy is
at least 2\. The adaptive reprogramming technique shows that

‘PY[W?)] - PY[W4H < Qsig(Q2,1 + Qsig) L2722

NOTE: Since we use 2A-bit salt to compute ch;, we do not need additional
games that make hcom random.
The signing oracle programs H3 by choosing chy «s {0, 1}2*.
We write a reduction as follows: The reduction algorithm first computes a1,
chooses chy, and ag. It then queries (chy, aq) to its oracle and obtains chs.
We have

[Pr{Wa] — Pr[Ws]| < Quig(Q2,2 + Qsig) - 27 A4,

NOTE: We do not need to program Hy.

The signing oracle programs H3 by choosing chz < {0, 1}7orotmritw,

We write a reduction as follows: The reduction algorithm first computes aq,
chooses chy, computes as, and chooses chy, and computes ag. It then queries
(cha, a3) to its oracle and obtains chs. Since chy has a min-entropy at least
2\, we have

‘PY[W5] - Pr[W6H S Qsig(Q2,3 + Qsig) . 272)\7

We then modify the order of sampling;

1. Sample ch; and chy uniformly at random.

2. Sample chs g, ..., chs g1 + {0, 1}70r0Fmr+w yptil it is accepted; define
Ch3 = Ch3’B,1.

Run the prover algorithm.

Reprogram H%(u”hcochlH -+ ||ler—1||salt) = chy.

Reprogram H3(chy||@||hy||t) := cha.

. For ctr € [B], reprogram H3(chs||[a]||ctr) == chs ctr-

ThlS is just a conceptual change of the order, and we have

o o g

PI‘[W(;] = PI‘[W’y]
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Gg: Next, we make the signature uniformly at random as possible as FAEST’s
proof. Intuitively speaking, this corresponds to the replacement of the prover
algorithms in the signing oracle with the simulator algorithms.

e Gg1: On each signing query, we use (hcom,pdecom, (come ife])s €1y v -
cT_l,u) — SimVOLECommit(i,saIt,@) and adjust V' to be consistent
with A and g induced by chs. We stress that SimVOLECommit samples
u and ¢y, ..., c,_1 uniformly at random. Following FAEST’s proof, this
modification is justified by the multi-hiding property of VOLECommit.
Concretely speaking, the upper bound is

|Pr[Wy] — Pr[Wg1]| < AdvHideV°"E[Qsig].

Now, the distribution of (u, V') is independent of ¢y, ..., ¢ 1.

e Ggo: On each signing query, we sample w and V at random instead of
computing VOLEHash; after that, we adjust the last fyvoLeHashMask =
A+ B rows of uw and V to make them be consistent with ch;. Since
VOLEHash is Fg+’\-11iding (Lemma 1 in FAEST’s spec), the distributions
are the same. We have

PI‘[Wg’l] = PI‘[W&Q}.

e Gg 3: Next, on each signing query, we choose [a] uniformly at random in-
stead of computing fmask(X)+>"; a; fi(X) and adjust the middle {czmask
rows of u and V. Correctly speaking, we compute f;(X), choose [a]
uniformly at random while it is consistent with ¢ and A, then com-
pute fmask(X) = [a] — >_; a;fi(X); we then adjust [uir p]irefa—1),relp)>
which decide the coefficients of (d—1)-degree polynomial fmas(X). Since
[wir i ]ire[a—1),k7€lp) arve hidden from the adversary, the modification in
this game does not change anything. Thus, we have

PI‘[W&Q] = PI‘[W&g] .

o Gg4: Finally, on each signing query, we replace t = w +ujy with random
one since [[a] is independent of w. This modification doesn’t change the
distribution because u[f] is chosen uniformly at random and is not used
elsewhere. Thus, we have

PI‘[W&g] = PI‘[W&4] .

Gg: In this game, the adversary loses if there exists (msg,0 = (chs,a4)) € Q

such that

e (@y,chy) = (@}, ch)) and chs # ch}; or

e (@y,chy,...,as,chs) = (@, chy,... a5 chi) and ay # aj.
If there is a difference between Gg and Gg, then the adversary submits new
(msg*, (ch3, a})) such that there exists (msg, (chs,a4)) € Q satisfying either
one of the conditions. Let hcom and hZ,, be the results of VC.Reconstruct
from chs and chj respectively.
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Case 1: Suppose that (a;,chy) = (a},ch;) and chs # chj. Since both chal-
lenges are accepted, we have 4 # i*, where ¢ := ChallDec(ch3[0 : 7o+ 71651 —
1]) and ¢* := ChallDec(ch3[0 : 7ok + 7151 — 1]). On the other hand, we have
heom = B;‘om since a; = aj. Since we checked the collision for Comsg, this
implies {com, ;} = {com, ,}. This breaks the multi-target non-invertibility
of Com; since the adversary outputs the preimage of com, ;. for some e
such that ile] # i*[e], where com ;i is chosen uniformly at random in

SimVOLECommit. Thus, the difference is at most AdvNI<°™ [TQsig], in which

the adversary receives random 7Qsjg strings and outputs one of preimages of

the strings.

Case 2: Next, suppose that (@;,chy,...,as,chs) = (d{,a*{, ...,a3,ch3) and

a4 # aj. Note that the condition chg = chj leads to ¢ = ¢*. Since (a1, a2, az) =

(ay, a3, a3), we have (pdecom, {com, ;i }ee|s; Ctr, salt) # (pdecom™, {(com:ﬂ.[e]}eem,
ctr*, salt™).

We have four sub-cases:

e Suppose that pdecom # pdecom™. In the computation of VC.Reconstruct,
we have nodes[i*] # nodes™[iT] for some i™ € revealed calculated from
© = ¢*. We then consider the sub-tree of the GGM tree whose root is
iT. Let I be the indices of the nodes of the sub-tree and Iaves be the
indices of the leaf nodes of the sub-tree.

We have two cases:

e If {nodes[i]}icr..... = {nodes™[i]}icr...., We then have a collision in
the sub-tree. That is, there is an index j € I such that nodes[j] #
nodes*[j] but PRGj(nodes[j],salt :: 2)\) = PRG;(nodes™[j],salt™ :
2)). However, this case is already excluded by the collision check for
PRG; introduced in Gs.

e If {nodes[i]}icr..... # {nodes™[i]}icr....., We have at least one index
JT € lieaves satisfying nodes[jT] # nodes™[j*]. Let (e,i) be a pair
induced by j* (that is, j* = N —1+44(e,1)). If com. ; = com} ;, then
we find a collision for Com;. However, this case is already excluded by
the collision check for Com; introduced in Gz. Otherwise, if com. ; #

com; ;. then we find a collision for Coms since a; = aj implies heom =
... However, this cannot happen since we already exclude this

event by the collision check for Coms introduced in Gs.
o If {com,;e}e # {com? ..}, then we have {Com.i}.; # {Com,;}c..

However, a; = aj implies heom = hl,,, and we have a collision for Coms.

However, this case is already excluded by the collision check for Comsy
introduced in Gs.

e Ifctr # ctr*, then we find a collision for H3 since (chs||as||ctr) # (chy||a@3]|ctr)
but chs = H3(chy||as||ctr) = H3(chy||a3||ctr*) = chi. However, this case
is already excluded by the collision check for H3 introduced in Gg.

o If salt # salt®, then we find a collision for H} since ch; = cihi but its
corresponding inputs differs. However, this case is already excluded by
the collision check for H} introduced in Gs. o

Summing up, the adversary cannot output a valid forgery satisfying (a;, chy,

...,a3,chs) = (@{,CTI, ...,a%,ch}) and aq # a} with (msg, (chs,a4)) € Q.
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The bound for both cases, we obtain that
|Pr[Wg.a] — Pr[Wo]| < AdvNI®®™ [7Qgg].

Reduction to EUF-NMA. We prove that the adversary’s forgery in Gg never
involves the reprogrammed points by contradiction. Suppose that the adver-
sary’s forgery involves some of the reprogrammed points when the signing
oracle computes o = (chs, aq) on a query msg. Those points are related to
Ch1 = H%(ﬂ||a1||sa|t), Ch2 = H%(ch1||a2), and Ch37i = H%(Chg”dz),”i), where
i € [B]. In any case, because of the collision checks, the first point ch; =
Hi(fi||ay||salt) should be reprogrammed.® Hence, the adversary’s forgery sat-
isfies ch; = Ei, i = ji*, ap = af, and salt = salt*. Especially, i = i*

implies msg = msg* because of the collision check of H; introduced in

Gsz. Furthermore, msg = msg* implies (chs,aq) # (ch3,aj). Due to the

first check in Gy, if (@y,chy) = (a%,ch,) then chs should be equal to chi.

Thus, the condition is boiled down to (msg, @1, chy, chs) = (msg*, a}, chy, ch?)

and a4 # aj. By the way, since chy = chj holds and there must not be

collisions for H3, we have (chy,as) = (chy,a%). Furthermore, chy = ch,
and the collision check for HZ implies (chy,ds) = (chy,a3). Thus, we have
(ay,chy,...,as,chs) = (at,chy,... a5, ch}) and ay # aj, but if this holds

the adversary loses in Gg. This is a contradiction, and now, we can conclude
that the adversary’s forgery does not involve the points reprogrammed by
the signing oracle in Gg.

Thus, we can easily construct an adversary B against the EUF-NMA security
of the signature scheme satisfying

Pr[Wy] < Advginme,

Remark 7.4. : If we only consider the EUF-CMA security, we can skip Gg
and we have Pr[Ws 4] < AdveBuf_nma. The argument follows:
Since we consider the EUF-CMA security, the adversary’s output should
msg* such that (msg*, o) ¢ Q for any o. Suppose that the adversary’s forgery
involves some of the reprogrammed points when the signing oracle computes
o = (chs, as) on a query msg # msg*. We note that, due to the collision check
for Hy introduced in Gz, we have p = Hy(pk||msg) # p* = Hy(pk||msg*).
1. If the first reprogrammed point ch; = Hi (1|1 ||salt) is involved, then we
have (p,a1,salt) = (pu*, af,salt™) and p = Hy(pk||msg) = Hy(pk||msg*) =
w*. But, this contradicts with p # p*. Thus, the first reprogrammed
point should not be involved in the forgery.
2. If the second reprogrammed point chy = H3(chy||az) is involved, then
we have (chy,as) = (chy,as). But, u # p* and the collision check for
Hi implies that this cannot happen. Thus, the first and second repro-
grammed points should not be involved in the forgery. In addition, we
have ch; # ch;.

9 Otherwise, we can find the collision for H3 or H% introduced in Gs, but such event
is eliminated by the collision check.

86



3. If the third reprogrammed point chy = H3(chz||as||ctr) for some ctr € [B]
is involved, then we have (chy,as) = (chy,a3). But, chy # ch; and the
collision check for H} implies that this cannot happen. Thus, all three
reprogrammed points should not be involved in the forgery.

Thus, the forgery does not involve the reprogrammed point, and the reduc-
tion is easily obtained. '°

Security proofs for the BUFF securities. Section 4.B.4 of the call for pro-
posal lists additional desirable security properties beyond standard unforgeabil-
ity. In this section, we evaluate the so-called BUFF securities (message-bound
signatures, exclusive ownership, and non re-signability) of our proposal. For the
definitions of BUFF securities, see |[CDF*21]. The proofs in [KX24b| showed
that several MPCitH signatures achieve some BUFF securities. We adopt their
proofs in the context of the VOLEitH signature and contain the concrete proofs
below for completeness.

Message-bounding signatures (MBS). The MBS security shows that any effi-
cient adversary cannot output pk and o with two different messages msg and
msg’ such that (pk,msg,o) and (pk,msg’,o) are both valid. Let A be an ad-
versary against the MBS security of PERK: A takes 1* as input and outputs
pk, msg, msg’, and o with msg # msg’ satisfying PERK.Verify(pk, msg,o) =
PERK.Verify(pk, msg’, o) = 1. Let us denote the internally reproduced values in
the verifications PERK.Verify(pk, msg, o) and PERK.Verify(pk, msg’, o) by = and
7, respectively.

e Due to the definition of PERK.Verify, we have chsz = chs = CT;, where chy =
H3(cha||as||ctr) and chy = H3(chy||aj]|ctr). If (chy,as) # (chy,ah), then we
find the collision for H3.

e Otherwise, we have chy = CT1;, where chy = H2(ch ||a;) and cihlz = H%(c?i“&é)
If (chy,as) # (E’l, a}), then we find the collision for H3.

e Otherwise, we have ch; = E’l, where ch; = Hj(lla[salt) and Ell =
Hi (@' ||ay||salt). If (fi,a1,salt) # (@, @}, salt), then we find the collision for
Hi.

e Otherwise, we have i = fi’, where ji = Hy(pk||msg) and i’ = Hy(pk||msg’).
Since msg # msg’, thus, we find the collision for Hj.

In any case, we can find a collision for either Hy, Hi, H2, or H3. Thus, if they
are collision-resistant, then PERK is MBS-secure.

Malicious strong universal exclusive ownership (M-S-UEO). We consider M-S-
UEO, which is the strongest form of exclusive ownership.'! The M-S-UEO se-
curity shows that any efficient adversary cannot output two different public key

10 We notice that FAEST’s proof did not consider the collision-resistance property of
Hi, H3, and H3.

11 If the scheme is M-S-UEO-secure, then it also Strong destructive exclusive ownership
(S-DEO-secure) and Strong conservative exclusive ownership (S-CEO-secure).
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pk and pk’, two (possibly different) messages msg and msg’, and a signature
o such that (pk,msg,o) and (pk’,msg’,o) are both valid. Let A be an adver-
sary against the M-S-UEO security of PERK: A takes 1* as input and outputs
pk, pk’, msg, msg’, and o with pk # pk’ such that PERK.Verify(pk, msg,o) =

PERK.Verify(pk’,msg’,0) = 1. By a similar argument to the MBS security
above, we have a collision for H3, H3, or H by chs, chy, or chy, respectively.
If i = ji/, then we have H;(pk||msg) = H;(pk’[|msg’) and obtain a collision
(pk, msg) # (pk’, msg’) for Hy since pk # pk’. Thus, if the hash functions H;, H3,
H3, and H3 are collision resistant, then PERK is M-S-UEOQ-secure.

Weak non-resignability (WNR). Roughly speaking, (weak) non-resignability shows
that, given pk and o on a hidden message msg (with some leakage)'2, any efficient
adversary cannot output pk’ and ¢’ such that (pk’, msg,o’) is valid. There are
some generic conversion for EUF-CMA-secure signature scheme in the (Q)ROM.

Since the signature is produced on [i := H; (pk||msg) instead of msg itself, our
signature scheme inherently implements the BUFF transform with a random
oracle H;. Don, Fehr, Huang, Liao, and Struck [DFH"24| showed the BUFF
transform allows us to achieve sSNR™M'%. Thus, PERK satisfies sNRH1+,

There is another weakened NR, NRH+ | in [DFHS24], but this requires the
$-BUFF transform that computes y = Hy(pk||msg]||s) with salt s.

7.2 Known attacks against PKP

7.2.1 Overview of known attacks. The Permuted Kernel Problem (PKP)
problem was introduced by Shamir in 1990 [Sha90]. Despite its long standing
history in cryptographic applications [Sha90, BFK*19, Beu20, BG23| and conse-
quently many cryptanalytic efforts [Geo92, BCCG93,PC94,JJ01,LP11, KMP19,
SBC23], algorithms to solve the PKP are still rather simple adaptations of combi-
natorial enumeration and meet-in-the-middle techniques. Indeed, the best attack
on standard PKP is a meet-in-the-middle adaptation known as the KMP algo-
rithm by Koussa, Macario-Rat and Patarin [KMP19]. Even though there has
been some recent progress on attacks [SBC23], those do not improve over the
KMP algorithm in the case of standard PKP on which PERK is based.

7.2.2 KMP algorithm on PKP. In this section we briefly sketch the KMP
algorithm to solve the PKP. Fully fledged descriptions, analysis and estima-
tion scripts are given for example in [KMP19,SBC23, EVZB24]. The algorithm
by Koussa, Macario-Rat and Patarin [KMP19] is a slight variant of previously
known combinatorial techniques [Geo92, BCCG93, PC94, JJ01]. The algorithm
was first proposed for the inhomogeneous version of PKP, where Hr(x) =y for
a given vector y € Fy* [KMP19]. The algorithm was then recently extended to
the multi-dimensional case [SBC23], i.e. the case where multiple x; and y; are
provided and the the solution is a permutation 7, with Hr(x;) = y; for all .

12 The definitions vary depending on how the information of msg is leaked to the
adversary.
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Santini, Baldi and Chiaraluce also introduced further improvements to this gen-
eralized KMP algorithm. However, as it only improves for ¢ > 1 pairs (x;,y;),
we do not consider it for the security analysis of PERK, which uses ¢ = 1.

Initially, the matrix H is transformed into semi-systematic form by applying
a change of basis (modelled by the invertible matrix Q)

_ Im—u Hl
an = (e ).

where H; € Fémfu)x(n*er“),Hg € ]FZX("fer“) and u is an optimization pa-
rameter of the algorithm. For the inhomogeneous variant, where y # 0, one
maintains the validity of the PKP identity by multiplying the syndrome y by
the same matrix Q

QHnr(x) = <Im0_" g;) m(x) = (Imo_“ g;) (2;) = (x1 + Hixo, H2x2)T

= (ylva)T = Qy7

where Qy = (y1,y2) € F'™" x Fy and 7(x) = (x1,x2) € F'™" x Fy. The
algorithm now focuses on solving the identity Hoxo = yo. For any found x,
satisfying the identity it is than checked if x; = y; — Hix5 and x5 together form
a permutation of x.

Candidates for xo are obtained by a meet-in-the-middle enumeration strat-
egy. Therefore x5 is further split as xo = (X21, X22), with Xo1, x93 € IB'ZX(("_7”+“)/2)
to obtain the meet-in-the-middle identity

H(x21,0) = y2 — (0,%22). (2)

Then the algorithm enumerates all candidates for xo; and x50, that is all per-
mutations of any selection of (n—m+w)/2 entries of x. For each such vector the
left (resp. right) side of Equation (2) is stored in a list Ly (resp. Lo). In a final
step the algorithm searches for matches between the lists L; and Lo yielding
the candidates for x5. From there x; can be computed as x; = y; — Hixo. If
(x1,%2) forms a permutation of x this yields the solution 7.

The complexity of the algorithm is (up to polynomial factors) linear in the
sizes of the lists L1, Lo and L, where L is the list of matches. The expected sizes
are

n B |L1 XL2|

|L1|:|L2:( )/2)((n—m+u)/2)! and |L]| pm

(n—m+u

7.2.3 Relation between PKP and the Code Equivalence Problem. In
their recent work Santini et al. [SBC23] formalized the equivalence between PKP
and the subcode equivalence problem. Namely, PKP asks to find a permutation
that sends the one dimensional code x into the code with parity check matrix
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H, which defines the problem. For variants of PKP using higher dimensional
codes this can have some implications regarding security, depending on the con-
crete choice of code dimension. However, again, for standard PKP using a 1-
dimensional code x this has no effect on security.

7.2.4 PKP over extension fields. In the context of PERK, we consider PKP
over F, with ¢ = p” being a prime power. To the best of our knowledge, no algo-
rithms are known that exploit the structure of the extension field F,. Especially,
there are no known adaptations or enhancements of the KMP algorithm that
leverage this characteristic.

Note that, this observation aligns with the evidence from the closely related
syndrome decoding problem over F,. The most effective algorithm for this prob-
lem, when g > 2, relies on an enumeration routine that is conceptually similar
to the KMP algorithm. Yet, even in the case of syndrome decoding over exten-
sion fields, no algorithmic improvements have been identified that exploit the
extension field’s structure. This was recently confirmed in [EW25].

7.2.5 Parameter selection. For parameter selection we fix ¢ = 2048. We
then, for any choice of n rely on a standard choice of m. That is, for any choice
of n we choose m minimal such that the expected amount of solutions to a
random instance of the PKP(g,m,n) is smaller than one. Subsequently we use
the CryptographicEstimators library'® [EVZB24], for the concrete complexity
estimation of the KMP algorithm for any set of parameters (g, n, m). Eventually,
for any security level we choose n such that the complexity estimation yields a
comfortable margin to the NIST specified security levels.

Note that in addition to this margin, the estimation of the KMP algorithm
via the CryptographicEstimators is already a lower bound on the algorithm’s
complexity by neglecting some factors. Furthermore the KMP algorithm suffers
from a memory complexity that is equal to its time complexity. Therefore, re-
alistic attacks have to resort to time-memory trade-offs further adding to this
margin. The proposed parameters can therefore be seen as conservative choices
with respect to security.

Overall the detailed procedure leads to the choices of parameters given in
Section 5 whose estimated bit complexity is given in Table 12.

'3 https://github.com/Crypto-TII/cryptographic_estimators
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Instance q n m Bit Security

PERK-1 2048 64 27 150
PERK-3 2048 92 43 220
PERK-5 2048 118 59 286

Table 12: Bit security estimates of PERK parameters

8 Advantages and Limitations

We now discuss some advantages and limitations of PERK.

8.1 Advantages
Some advantages of our design are:

+ PERK features very small public key and secret key sizes along with moderate
signature sizes. Therefore, on the combined metric of pk + signature size,
PERK produces sizes of approximately 3.5 kB for NIST security level 1 which
compares well with other signature schemes.

+ Contrarily to many post-quantum schemes, the security of PERK is not based
on a problem relying on cyclic structure or ring structure.

+ Resilience against PKP attacks: A large part of the signature size scales with
the security parameter A (due to the seed trees and commitments) and not
directly with the PKP parameters. As a consequence, increasing the PKP
parameters has a limited impact on the total size of the signature.

+ PERK performances are constrained by numerous calls to symmetric crypto-
graphic primitives. Any speedup to the implementation of these primitives
directly benefit PERK. In particular, hardware acceleration support for such
primitives improves the performance of the scheme.

8.2 Limitations
In the following, we point out the limitations of PERK.

— While PKP was initially defined over prime fields, PERK relies on PKP de-
fined over F, where I, is an extension field of F,. While, no algorithms
exploiting the structure of the extension field are known, this variant has
been less studied than the original long time standing PKP problem.

— While PERK’s performance profile is comparable to other MPCitH-based
constructions, those can not compete with the fastest post-quantum secure
schemes, usually based on structured lattices.
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